Skip to main content

Incremental Quaternion Random Neural Networks

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1787))

Included in the following conference series:

  • 646 Accesses

Abstract

Quaternion, as a hypercomplex number with three imaginary elements, is effective in characterizing three- and four-dimensional vector signals. Quaternion neural networks with randomly generated quaternions as the hidden node parameters become attractive for the good learning capability and generalization performance. In this paper, a novel incremental quaternion random neural network trained by extreme learning machine (IQ-ELM) is proposed. To fully exploit the second-order Q-properness statistic of quaternion random variables, the augmented quaternion vector is further applied in IQ-ELM (IAQ-ELM) for hypercomplex data learning. The network is constructed by gradually adding the hidden neuron one-by-one, where the output weight is optimized by minimizing the residual error based on the fundamental of the generalized HR calculus (GHR) of quaternion variable function. Experiments on multidimensional chaotic system regression, aircraft trajectory tracking, face and image recognition are conducted to show the effectiveness of IQ-ELM and IAQ-ELM. Comparisons to two popular quaternion RNNs, Schmidt NN (SNN) and random vector functional-link net (RVFL), are also provided to show the feasibility and superiority of using quaternions in RNN for incremental learning.

This work was supported by the National Natural Science Foundation of China (U1909209), the National Key Research and Development Program of China (2021YFE0100100, 2021YFE0205400), the Natural Science Key Foundation of Zhejiang Province (LZ22F030002), and the Research Funding of Education of Zhejiang Province (GK228810299201).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Javidi, S., Took, C.C., Mandic, D.P.: Fast independent component analysis algorithm for quaternion valued signals. IEEE Trans. Neural Netw. 22(12), 1967–1978 (2011)

    Article  Google Scholar 

  2. Took, C.C., Mandic, D.P.: The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Trans. Signal Process. 57(4), 1316–1327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ujang, B.C., Took, C.C., Mandic, D.P.: Quaternion-valued nonlinear adaptive filtering. IEEE Trans. Neural Netw. 22(8), 1193–1206 (2011)

    Article  Google Scholar 

  4. Jahanchahi, C., Mandic, D.P.: A class of quaternion Kalman filters. IEEE Trans. Signal Proce. 58(7), 3895–3901 (2010)

    Google Scholar 

  5. Tobar, F.A., Mandic, D.P.: Quaternion reproducing kernel Hilbert spaces: existence and uniqueness conditions. IEEE Trans. Infor. Theory 60(9), 5736–5749 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arena, P., Fortuna, L., Re, R., et al.: Multilayer perceptions to approximate quaternion valued function. Int. J. Neural Syst. 6(4), 435–446 (1995)

    Article  Google Scholar 

  7. Greenblatt, A.B., Agaian, S.S.: Introducing quaternion multi-valued neural networks with numerical examples. Inf. Sci. 423, 326–342 (2017)

    Article  MathSciNet  Google Scholar 

  8. Gaudet, C., Maida, A.: Deep quaternion networks. CoRR , arxiv.org/abs/1712.04604 (2018)

  9. Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. CoRR, arxiv.org/abs/1903.00658 (2019)

  10. Schmidt, W., Kraaijveld, M., Duin, R.: Feedforward neural networks with random weights. In: Proceedings of 11th IAPR International Conference on Pattern Recognition, vol. II. pp. 1–4 (1992)

    Google Scholar 

  11. Pao, Y., Park, G., Sobajic, D.: Learning and generalization characteristics of random vector functional-link net. Neurocomputing 6, 163–180 (1994)

    Article  Google Scholar 

  12. Zhang, Y., Wu, J., Cai, Z., Philip, B., Yu, S.: An unsupervised parameter learning model for RVFL neural network. Neural Netw. 112, 85–97 (2019)

    Article  MATH  Google Scholar 

  13. Huang, G., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  14. Cao, J., Zhang, K., Yong, H., Lai, X., Chen, B., Lin, Z.: Extreme learning machine with affine transformation inputs in an activation function. IEEE Trans. Neural Netw. Learning Syst. 30(7), 2093–2107 (2019)

    Article  MathSciNet  Google Scholar 

  15. Yang, L., Song, S., Li, S., Chen, Y., Huang, G.: Graph embedding-based dimension reduction with extreme learning machine. IEEE Trans. Syst. Man. Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2931003.

  16. Chen, H., Wang, T., Cao, J., Vidal, P.-P., Yang, Y.: Dynamic quaternion extreme learning machine. IEEE Trans. Circ. Syst. II Express Briefs 68(8), 3012–3016 (2021)

    Google Scholar 

  17. Cao, J., Dai, H., Lei, B., Yin, C., Zeng, H., Kummert, A.: Maximum correntropy criterion-based hierarchical one-class classification. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3748–3754 (2021)

    Article  MathSciNet  Google Scholar 

  18. Lai, X., Cao, J., Lin, Z.: An accelerated maximally split ADMM for a class of generalized ridge regression. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3104840

  19. Minemoto, T., Isokawa, T., Nishimura, H., Siew, C.K.: Feed forward neural network with random quaternionic neurons. Signal Process. 136, 59–68 (2017)

    Article  Google Scholar 

  20. Zhang, H., Wang, Y., Xu, D., Wang, J., Xu, L.: The augmented complex-valued extreme learning machine. Neurocomputing 311(15), 363–372 (2018)

    Article  Google Scholar 

  21. Xu, D., Xia, Y., Mandic, D.P.: Optimization in quaternion dynamic systems: gradient, Hessian, and learning algorithms. IEEE Trans. Neural Netw. Learning Syst. 27(2), 249–261 (2016)

    Article  MathSciNet  Google Scholar 

  22. Xu, D., Mandic, D.P.: The theory of quaternion matrix derivatives. IEEE Trans. Signal Process. 63(6), 1543–1556 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mandic, D.P., Jahanchahi, C., Took, C.C.: A quaternion gradient operator and its applications. IEEE Signal Process. Lett. 18(1), 47–50 (2011)

    Article  Google Scholar 

  24. Took, C.C., Mandic, D.P.: Augmented second-order statistics of quaternion random signals. Signal Process. 91(2), 214–224 (2011)

    Article  MATH  Google Scholar 

  25. Via, J., Ramirez, D., Santamaria, I.: Properness and widely linear processing of quaternion random vectors. IEEE Trans. Inf. Theory 56(7), 3502–3515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiang, M., Kanna, S., Mandic, D.P.: Performance analysis of quaternion- valued adaptive filters in nonstationary environments. IEEE Trans. Signal Process. 66(6), 1566–1579 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., Lv, H.: Augmented quaternion extreme learning machine. IEEE Access 7, 90842–90850 (2019)

    Article  Google Scholar 

  28. Huang, G., Li, M., Chen, L., Siew, C.K.: Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71(4–6), 576–583 (2008)

    Article  Google Scholar 

  29. Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85(2), 199–225 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ell, T.A., Sangwine, S.J.: Quaternion involutions and anti-involutions. Comput. Math. with Appl. 53(1), 137–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, D., Jahanchahi, C., Took, C.C., Mandic, D.P.: Enabling quaternion derivatives: the generalized HR calculus. Roy. Soc. Open Sci. 2(8), 1–24 (2015)

    MathSciNet  Google Scholar 

  32. Rumelhart, D.E., and McClelland, J.L.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, p. 567. MIT Press (1986)

    Google Scholar 

  33. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  MATH  Google Scholar 

  34. Matsumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 31(12), 1055–1058 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos. 9(7), 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Stat. Mech. Appl. 364, 103–110 (2006)

    Article  Google Scholar 

  37. Spacek, L.: Description of the collection of facial images (2011). http://cswww.essex.ac.uk/mv/allfaces/index.html

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (U1909209), the National Key Research and Development Program of China (2021YFE0100100, 2021YFE0205400) and the Open Research Projects of Zhejiang Lab (2021MC0AB04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuwen Cao .

Editor information

Editors and Affiliations

A Appendices

A Appendices

1.1 A.1 Proof of Proposition 1

With the well established GHR of quaternion variable function and Lemmas 2\({\sim } 4\), the optimization of (7) can be solved by finding the gradient of the objective to \(\beta _n\). It is observed that the norm of the objective residual error \(||e_n||^2\) can be equivalently calculated as \(e_n e_n^*\) or \(e_n^* e_n \), where \(e_n^*\) is the conjugate of \(e_n\). With the left- and right-derivatives, and the product rule in quaternion derivative, one can readily find that the same results will be obtained either on \(e_n e_n^*\) or \(e_n^* e_n \). We take the derivative to \(e_n^* e_n \) as an example in this paper, with Lemma 3, which can be expressed as

$$\begin{aligned} \begin{aligned} \frac{\partial ||e_n||^2}{\partial {\beta _n}}&=e^*_n \frac{\partial e_n}{\partial {\beta _n}}+\frac{\partial e^*_n}{\partial {\beta _n}^{e_n}}e_n\\&=e^*_n \frac{\partial (e_{n-1}-\beta _n \sigma _n)}{\partial {\beta _n}}+\frac{\partial (e_{n-1}-\beta _n \sigma _n)^*}{\partial {\beta _n}^{e_n}}e_n \end{aligned} \end{aligned}$$
(15)

Since \(e_{n-1}\) and \(\beta _n\) are not related, \(\frac{\partial e_{n-1}}{\beta _n}=0\). With (4), we have

$$\begin{aligned} \frac{\partial ||e_n||^2}{\partial {\beta _n}}&=e^*_n \frac{\partial e_n}{\partial {\beta _n}}+\frac{\partial e^*_n}{\partial {\beta _n}^{e_n}}e_n\\&=e^*_n \frac{\partial (e_{n-1}-\beta _n \sigma _n)}{\partial {\beta _n}}+\frac{\partial (e_{n-1}-\beta _n \sigma _n)^*}{\partial {\beta _n}^{e_n}}e_n\\&=-e^*_n S(\sigma _n)+\frac{\partial (-\sigma ^*_n \beta ^*_n)}{\partial {\beta _n}^{e_n}}e_n\\&=-e^*_n S(\sigma _n)+\frac{1}{2}\sigma ^*_n e^*_n\\&=-e^*_n S(\sigma _n)+\frac{1}{2}S(\sigma _n)e^*_n-\frac{1}{2}V(\sigma _n)e^*_n\\&=-\frac{1}{2}\sigma _n({e^*_{n-1}}-{\sigma ^*_n} {\beta ^*_n}). \end{aligned}$$

Here, \(e_{n-1}\) denotes the residual error of previous \(n-1\) nodes, \(\sigma _n\) represents the n-th hidden node output, \(S(\sigma _n)\) and \(V(\sigma _n)\) are the real (scalar) and imaginary parts of the output \(\sigma _n\), respectively. When \(\frac{\partial ||e_n||^2}{\partial \beta _n}=0\), the objective (7) reaches the minimum, so we have

$$ -\frac{1}{2}\sigma _n({e^*_{n-1}}-{\sigma ^*_n} {\beta ^*_n})=0$$
$$\sigma _n e^*_{n-1}=\sigma _n {\sigma ^*_n} \beta ^*_n$$
$$\beta ^*_n=\frac{\sigma _n e^*_{n-1}}{||\sigma _n||^2}$$

If and only if \(\beta _n=\frac{e_{n-1}{\sigma ^*_n}}{||\sigma _n||^2}\), the objective (7) reaches the minimum. That finishes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, X., Wang, T., Chen, H., Lei, B., Vidal, PP., Cao, J. (2023). Incremental Quaternion Random Neural Networks. In: Sun, F., Cangelosi, A., Zhang, J., Yu, Y., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2022. Communications in Computer and Information Science, vol 1787. Springer, Singapore. https://doi.org/10.1007/978-981-99-0617-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0617-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0616-1

  • Online ISBN: 978-981-99-0617-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics