Skip to main content

A Review of Deep Reinforcement Learning Exploration Methods: Prospects and Challenges for Application to Robot Attitude Control Tasks

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2022)

Abstract

In recent years, deep reinforcement learning has been widely used in the real world, such as in robot control and autonomous driving. However, the sample-inefficient of deep reinforcement learning prevents its application in robot control. In addition, complex real-world scenarios require the high robustness of robot controllers, and the design of controllers needs to consider the influence of the external environment. These problems become severer in environments with high-dimensional state action spaces and sparse delay rewards. In this paper, we provide a systematic introduction and summary of the existing methods for exploration. Firstly, we introduce the primary exploration techniques and summarize the challenges faced by intelligent body exploration. Then, we classify the existing exploration methods in terms of whether they generate other bonuses or not and elaborate on the ideas of different methods. Finally, we discuss the challenges of applying deep reinforcement learning to robot control and the applicability of different exploration methods to attitude control tasks, ruling out exploration methods unsuitable for attitude control tasks for subsequent research.

CAS Project for Young Scientists in Basic Research, Grant No. YSBR-040.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  2. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  3. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013)

    Article  Google Scholar 

  4. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. (CSUR) 52(1), 1–38 (2019)

    Article  Google Scholar 

  5. Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement learning algorithms for adaptive traffic signal control. In: McCluskey, T.L., Kotsialos, A., Müller, J.P., Klügl, F., Rana, O., Schumann, R. (eds.) Autonomic Road Transport Support Systems. AS, pp. 47–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25808-9_4

    Chapter  Google Scholar 

  6. O’Kelly, M., Sinha, A., Namkoong, H., Tedrake, R., Duchi, J.C.: Scalable end-to-end autonomous vehicle testing via rare-event simulation. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  7. Lai, T.L., Robbins, H., et al.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Raffin, A., Kober, J., Stulp, F.: Smooth exploration for robotic reinforcement learning. In: Conference on Robot Learning, pp. 1634–1644. PMLR (2022)

    Google Scholar 

  9. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations: theory and application to reward shaping. In: ICML, vol. 99, pp. 278–287 (1999)

    Google Scholar 

  10. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by self-supervised prediction. In: International Conference on Machine Learning, pp. 2778–2787. PMLR (2017)

    Google Scholar 

  11. Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random network distillation. arXiv preprint arXiv:1810.12894 (2018)

  12. Pathak, D., Gandhi, D., Gupta, A.: Self-supervised exploration via disagreement. In: International Conference on Machine Learning, pp. 5062–5071. PMLR (2019)

    Google Scholar 

  13. Aubret, A., Matignon, L., Hassas, S.: A survey on intrinsic motivation in reinforcement learning. arXiv preprint arXiv:1908.06976 (2019)

  14. Yang, T., Tang, H., Bai, C., Liu, J., Hao, J., Meng, Z., Liu, P.: Exploration in deep reinforcement learning: a comprehensive survey. arXiv preprint arXiv:2109.06668 (2021)

  15. Garaffa, L.C., Basso, M., Konzen, A.A., de Freitas, E.P.: Reinforcement learning for mobile robotics exploration: a survey. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  16. Ladosz, P., Weng, L., Kim, M., Oh, H.: Exploration in deep reinforcement learning: a survey. Inf. Fusion (2022)

    Google Scholar 

  17. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  18. Lesort, T., Díaz-Rodríguez, N., Goudou, J.F., Filliat, D.: State representation learning for control: an overview. Neural Netw. 108, 379–392 (2018)

    Article  Google Scholar 

  19. Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., Srinivas, A.: Reinforcement learning with augmented data. Adv. Neural. Inf. Process. Syst. 33, 19884–19895 (2020)

    Google Scholar 

  20. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)

    Article  MATH  Google Scholar 

  21. Azizzadenesheli, K., Brunskill, E., Anandkumar, A.: Efficient exploration through Bayesian deep Q-networks. In: 2018 Information Theory and Applications Workshop (ITA), pp. 1–9. IEEE (2018)

    Google Scholar 

  22. Janz, D., Hron, J., Mazur, P., Hofmann, K., Hernández-Lobato, J.M., Tschiatschek, S.: Successor uncertainties: exploration and uncertainty in temporal difference learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  23. Osband, I., Blundell, C., Pritzel, A., Van Roy, B.: Deep exploration via bootstrapped DQN. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  24. Ciosek, K., Vuong, Q., Loftin, R., Hofmann, K.: Better exploration with optimistic actor critic. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  25. Shyam, P., Jaśkowski, W., Gomez, F.: Model-based active exploration. In: International Conference on Machine Learning, pp. 5779–5788. PMLR (2019)

    Google Scholar 

  26. Lee, K., Laskin, M., Srinivas, A., Abbeel, P.: Sunrise: a simple unified framework for ensemble learning in deep reinforcement learning. In: International Conference on Machine Learning, pp. 6131–6141. PMLR (2021)

    Google Scholar 

  27. Oh, J., Guo, Y., Singh, S., Lee, H.: Self-imitation learning. In: International Conference on Machine Learning, pp. 3878–3887. PMLR (2018)

    Google Scholar 

  28. Guo, Y., et al.: Memory based trajectory-conditioned policies for learning from sparse rewards. Adv. Neural. Inf. Process. Syst. 33, 4333–4345 (2020)

    Google Scholar 

  29. Dai, T., Liu, H., Anthony Bharath, A.: Episodic self-imitation learning with hindsight. Electronics 9(10), 1742 (2020)

    Article  Google Scholar 

  30. Chen, Z., Lin, M.: Self-imitation learning in sparse reward settings. CoRR, abs/2010.06962 (2020)

    Google Scholar 

  31. Zhu, Z., Lin, K., Dai, B., Zhou, J.: Self-adaptive imitation learning: learning tasks with delayed rewards from sub-optimal demonstrations (2022)

    Google Scholar 

  32. Vecerik, M., et al.: Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817 (2017)

  33. Hester, T., et al.: Deep Q-learning from demonstrations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  34. Kang, B., Jie, Z., Feng, J.: Policy optimization with demonstrations. In: International Conference on Machine Learning, pp. 2469–2478. PMLR (2018)

    Google Scholar 

  35. Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Overcoming exploration in reinforcement learning with demonstrations. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6292–6299. IEEE (2018)

    Google Scholar 

  36. Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., Dabney, W.: Recurrent experience replay in distributed reinforcement learning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  37. Paine, T.L., et al.: Making efficient use of demonstrations to solve hard exploration problems. arXiv preprint arXiv:1909.01387 (2019)

  38. Rengarajan, D., Vaidya, G., Sarvesh, A., Kalathil, D., Shakkottai, S.: Reinforcement learning with sparse rewards using guidance from offline demonstration. arXiv preprint arXiv:2202.04628 (2022)

  39. Stadie, B.C., Levine, S., Abbeel, P.: Incentivizing exploration in reinforcement learning with deep predictive models. arXiv preprint arXiv:1507.00814 (2015)

  40. Oh, C., Cavallaro, A.: Learning action representations for self-supervised visual exploration. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5873–5879. IEEE (2019)

    Google Scholar 

  41. Kim, H., Kim, J., Jeong, Y., Levine, S., Song, H.O.: EMI: exploration with mutual information. arXiv preprint arXiv:1810.01176 (2018)

  42. Raileanu, R., Rocktäschel, T.: RIDE: rewarding impact-driven exploration for procedurally-generated environments. arXiv preprint arXiv:2002.12292 (2020)

  43. Bougie, N., Ichise, R.: Fast and slow curiosity for high-level exploration in reinforcement learning. Appl. Intell. 51(2), 1086–1107 (2021)

    Article  Google Scholar 

  44. Nguyen, T., Luu, T.M., Vu, T., Yoo, C.D.: Sample-efficient reinforcement learning representation learning with curiosity contrastive forward dynamics model. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3471–3477. IEEE (2021)

    Google Scholar 

  45. Tang, H., et al.: # exploration: a study of count-based exploration for deep reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  46. Ostrovski, G., Bellemare, M.G., Oord, A., Munos, R.: Count-based exploration with neural density models. In: International Conference on Machine Learning, pp. 2721–2730. PMLR (2017)

    Google Scholar 

  47. Martin, J., Sasikumar, S.N., Everitt, T., Hutter, M.: Count-based exploration in feature space for reinforcement learning. arXiv preprint arXiv:1706.08090 (2017)

  48. Machado, M.C., Bellemare, M.G., Bowling, M.: Count-based exploration with the successor representation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5125–5133 (2020)

    Google Scholar 

  49. Zhang, T., Rashidinejad, P., Jiao, J., Tian, Y., Gonzalez, J.E., Russell, S.: MADE: exploration via maximizing deviation from explored regions. Adv. Neural. Inf. Process. Syst. 34, 9663–9680 (2021)

    Google Scholar 

  50. Zhang, T., et al.: Noveld: a simple yet effective exploration criterion. Adv. Neural. Inf. Process. Syst. 34, 25217–25230 (2021)

    Google Scholar 

  51. Zhang, T., et al.: BeBold: exploration beyond the boundary of explored regions. arXiv preprint arXiv:2012.08621 (2020)

  52. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O., Clune, J.: Go-explore: a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995 (2019)

  53. Fu, J., Co-Reyes, J., Levine, S.: EX2: exploration with exemplar models for deep reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  54. Savinov, N., et al.: Episodic curiosity through reachability. arXiv preprint arXiv:1810.02274 (2018)

  55. Badia, A.P., et al.: Never give up: learning directed exploration strategies. arXiv preprint arXiv:2002.06038 (2020)

  56. Badia, A.P., et al.: Agent57: outperforming the atari human benchmark. In: International Conference on Machine Learning, pp. 507–517. PMLR (2020)

    Google Scholar 

  57. Seo, Y., Chen, L., Shin, J., Lee, H., Abbeel, P., Lee, K.: State entropy maximization with random encoders for efficient exploration. In: International Conference on Machine Learning, pp. 9443–9454. PMLR (2021)

    Google Scholar 

  58. Plappert, M., et al.: Parameter space noise for exploration. arXiv preprint arXiv:1706.01905 (2017)

  59. Fortunato, M., et al.: Noisy networks for exploration. arXiv preprint arXiv:1706.10295 (2017)

  60. Whitney, W.F., Bloesch, M., Springenberg, J.T., Abdolmaleki, A., Cho, K., Riedmiller, M.: Decoupled exploration and exploitation policies for sample-efficient reinforcement learning. arXiv preprint arXiv:2101.09458 (2021)

  61. Schäfer, L., Christianos, F., Hanna, J.P., Albrecht, S.V.: Decoupled reinforcement learning to stabilise intrinsically-motivated exploration. In: AAMAS, pp. 1146–1154 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengge Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Wu, F., Zhao, J. (2023). A Review of Deep Reinforcement Learning Exploration Methods: Prospects and Challenges for Application to Robot Attitude Control Tasks. In: Sun, F., Cangelosi, A., Zhang, J., Yu, Y., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2022. Communications in Computer and Information Science, vol 1787. Springer, Singapore. https://doi.org/10.1007/978-981-99-0617-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0617-8_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0616-1

  • Online ISBN: 978-981-99-0617-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics