Skip to main content

High Resolution Multi-indicator MIM Nano-Sensor Based on Aperture-Coupled Asymmetric Square Resonator

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1787))

Included in the following conference series:

  • 594 Accesses

Abstract

In this study, a plasmonic nano-sensor with excellent performance based on aperture-coupled square resonator is proposed. Utilizing the 2D finite element algorithm, the transmission characteristics of MIM waveguide structure are systematically explored. Simulation shows that a sharp fano line-shape is formed in a succinct structure with its FOM (figure of merit) over 2000. In addition, we systematically investigate the coupling distance, the geometric parameter of the resonator, in detail. Optimizing the structural parameter results and introducing asymmetry into the structure by two means, such as horizontally moving the center of square resonator or adding a tiny groove besides the square resonator. Both of these can cause extra fano profile in transmission pattern while the former fano profile maintains stable, thus this property makes the metrics in sensor of this structure more abundant. Results prove that this compact and asymmetric structure has great potential application in nano-sensor, optical switches and nonlinear devices in future highly integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, S.L., et al.: Perfect plasmon-induced absorption and its application for multi-switching in simple plasmonic system. Plasmonics 13(3), 1015–1020 (2018). https://doi.org/10.1007/s11468-017-0599-9

    Article  Google Scholar 

  2. Bozhevolnyi, S.I., et al.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083), 508–511 (2006)

    Article  Google Scholar 

  3. Zheng, M., et al.: Tunable and selective transmission based on multiple resonance modes in side-coupled sectorial-ring cavity waveguide. Plasmonics 14(2), 397–405 (2019). https://doi.org/10.1007/s11468-018-0817-0

    Article  Google Scholar 

  4. Khani, S., Danaie, M., Rezaei, P.: Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14(1), 53–62 (2019). https://doi.org/10.1007/s11468-018-0777-4

    Article  Google Scholar 

  5. Wang, Y., Hou, Z.L., Yu, L.: Plasmonic nanosensor based on sharp Fano resonances induced by aperture-coupled slot system. Opt. Commun. 480, 126438 (2021)

    Article  Google Scholar 

  6. Qi, J., et al.: Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt. express 22(12), 14688–14695 (2014)

    Article  Google Scholar 

  7. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  Google Scholar 

  8. Janković, N., Cselyuszka, N.: High-resolution plasmonic filter and refractive index sensor based on perturbed square cavity with slits and orthogonal feeding scheme. Plasmonics 14(3), 555–560 (2019). https://doi.org/10.1007/s11468-018-0834-z

    Article  Google Scholar 

  9. Shahamat, Y., Vahedi, M.: Mid-infrared plasmonically induced absorption and transparency in a Si-based structure for temperature sensing and switching applications. Opt. Commun. 430, 227–233 (2019)

    Article  Google Scholar 

  10. Kunhua, W., et al.: Multiple plasmon-induced transparency responses in a subwavelength inclined ring resonators system. IEEE Photonics J. 7(6), 1–7 (2015)

    Article  Google Scholar 

  11. Guo, Z., et al.: Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors 18(5), 1348 (2018)

    Article  Google Scholar 

  12. Chen, J., et al.: Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8(4), 1627–1631 (2013). https://doi.org/10.1007/s11468-013-9580-4

    Article  Google Scholar 

  13. Chen, Z., et al.: High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt. Commun. 340, 1–4 (2015)

    Article  Google Scholar 

  14. Jankovic, N., Cselyuszka, N.: Multiple Fano-like MIM plasmonic structure based on triangular resonator for refractive index sensing. Sensors 18(1), 287 (2018)

    Article  Google Scholar 

  15. Kamada, S., et al.: Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides. Opt. express 24(15), 16224–16231 (2016)

    Article  Google Scholar 

  16. Wang, Y., et al.: Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor. IEEE Photonics Journal 8(6), 1–8 (2016)

    Article  Google Scholar 

  17. Chen, Y., et al.: Double Fano resonances based on different mechanisms in a MIM plasmonic system. Photonics Nanostruct. Fundam. Appl. 36, 100714 (2019)

    Article  Google Scholar 

  18. Shafagh, S.G., Kaatuzian, H., Danaie, M.: Analysis, design and simulation of MIM plasmonic filters with different geometries for technical parameters improvement. Commun. Theor. Phys. 72(8), 085502 (2020)

    Article  MathSciNet  Google Scholar 

  19. Wang, Y., et al.: Independently formed multiple Fano resonances for ultra-high sensitivity plasmonic nanosensor. Plasmonics 13(1), 107–113 (2018). https://doi.org/10.1007/s11468-016-0489-6

    Article  Google Scholar 

  20. Chen, Z., et al.: Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator. Plasmonics 10(1), 131–137 (2015). https://doi.org/10.1007/s11468-014-9786-0

    Article  MathSciNet  Google Scholar 

  21. Chen, Z., et al.: A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system. IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015)

    Article  Google Scholar 

  22. Rahmatiyar, M., Afsahi, M., Danaie, M.: Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6), 2169–2176 (2020). https://doi.org/10.1007/s11468-020-01238-z

    Article  Google Scholar 

  23. Chen, J., et al.: Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 482, 126563 (2021)

    Article  Google Scholar 

  24. El Haffar, R., Farkhsi, A., Mahboub, O.: Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A 126, 1–10 (2020)

    Article  Google Scholar 

  25. Butt, M.A., Khonina, S.N., Kazanskiy, N.L.: An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 202, 163655 (2020)

    Article  Google Scholar 

  26. Kazanskiy, N.L., Butt, M.A., Khonina, S.N.: Nanodots decorated MIM semi-ring resonator cavity for biochemical sensing applications. Photonics Nanostruct. Fundam. Appl. 42, 100836 (2020)

    Article  Google Scholar 

  27. Rahman, M.Z.U., et al.: Ultra-wide-band band-pass filters using plasmonic MIM waveguide-based ring resonators. IEEE Photonics Technol. Lett. 30(19), 1715–1718 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This paper is supported by “the Fundamental Research Funds for the Central Universities” (No. 2022RC23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naijing Lv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, C., Lv, N., Wei, L., Zhang, Y., Lv, X. (2023). High Resolution Multi-indicator MIM Nano-Sensor Based on Aperture-Coupled Asymmetric Square Resonator. In: Sun, F., Cangelosi, A., Zhang, J., Yu, Y., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2022. Communications in Computer and Information Science, vol 1787. Springer, Singapore. https://doi.org/10.1007/978-981-99-0617-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0617-8_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0616-1

  • Online ISBN: 978-981-99-0617-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics