Abstract
EIEE syndrome, known as early infantile epileptic encephalopathy, is considered to be the earliest onset form of age-dependent epileptic encephalopathy. The main manifestations are tonic-spasmodic seizures in early infancy, accompanied by burst suppressive electroencephalogram (EEG) patterns and severe psychomotor disturbances, with structural brain lesions in some cases. Specific to EIEE syndrome, this paper presents a comprehensive analysis of EEG features at three different periods: pre-seizure, seizure and post-seizure. Coherent features are extracted to characterize EEG signals in EIEE syndrome, and Kruskal-Wallis H Test and Gradient-weighted Class Activation Mapping (Grad-CAM) are used to investigate and visualize the significance of features in different frequency band for distinguishing the three stages. The study found that activity synchrony between temporal and central regions decreased significantly in the \(\gamma \) band during seizures. And the coherence feature in the \(\gamma \) band combined with the ResNet18-based seizure detection model achieved an accuracy of 91.86%. It is believed that changes in the \(\gamma \) band can be considered as a biomarker of seizure cycle changes in EIEE syndrome.
This work was supported by the National Natural Science Foundation of China (U1909209), the National Key Research and Development Program of China (2021YFE0100100, 2021YFE0205400), the Natural Science Key Foundation of Zhejiang Province (LZ22F030002), and the Research Funding of Education of Zhejiang Province (GK228810299201).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Epilepsy, A.: Proposal for revised classification of epilepsies and epileptic syndromes. In: The Treatment of Epilepsy: Principles & Practice, p. 354 (2006)
Ohtahara, S., Yamatogi, Y.: Epileptic encephalopathies in early infancy with suppression-burst. J. Clin. Neurophysiol. 20(6), 398–407 (2003)
Yamatogi, Y., Ohtahara, S.: Early-infantile epileptic encephalopathy with suppression-bursts, ohtahara syndrome; its overview referring to our 16 cases. Brain Develop. 24(1), 13–23 (2002)
Rukhsar, S., Khan, Y.U., Farooq, O., Sarfraz, M., Khan, A.T.: Patient-specific epileptic seizure prediction in long-term scalp EEG signal using multivariate statistical process control. IRBM 40(6), 320–331 (2019)
Bandarabadi, M., Teixeira, C.A., Rasekhi, J., Dourado, A.: Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 126(2), 237–248 (2015)
Gadhoumi, K., Lina, J.-M., Gotman, J.: Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral eeg. Clin. Neurophysiol. 123(10), 1906–1916 (2012)
Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. (2007)
Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: The use of time-frequency distributions for epileptic seizure detection in EEG recordings. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3–6. IEEE (2007)
Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13(5), 703–710 (2009)
George, F., et al.: Epileptic seizure prediction using EEG images. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 1595–1598. IEEE (2020)
Zhang, S., Chen, D., Ranjan, R., Ke, H., Tang, Y., Zomaya, A.Y.: A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement. J. Supercomput. 77(4), 3914–3932 (2021)
Yang, X., Zhao, J., Sun, Q., Jianbo, L., Ma, X.: An effective dual self-attention residual network for seizure prediction. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1604–1613 (2021)
Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.-H., Suri, J.S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)
Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80(3), 187–194 (2005)
Pravin Kumar, S., Sriraam, N., Benakop, P.G., Jinaga, B.C.: Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst. Appl. 37(4), 3284–3291 (2010)
Zheng, R., et al.: Scalp EEG functional connection and brain network in infants with west syndrome. Neural Netw. 153, 76–86 (2022)
Cao, J., et al.: Using interictal seizure-free EEG data to recognise patients with epilepsy based on machine learning of brain functional connectivity. Biomed. Signal Process. Control 67, 102554 (2021)
Sha, Z., Wager, T.D., Mechelli, A., He, Y.: Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85(5), 379–388 (2019)
Toda, Y., et al.: High-frequency EEG activity in epileptic encephalopathy with suppression-burst. Brain Develop. 37(2), 230–236 (2015)
Feng, Y., et al.: 3D residual-attention-deep-network-based childhood epilepsy syndrome classification. Knowl.-Based Syst. 248, 108856 (2022)
Dinghan, H., Cao, J., Lai, X., Wang, Y., Wang, S., Ding, Y.: Epileptic state classification by fusing hand-crafted and deep learning EEG features. IEEE Trans. Circuits Syst. II Express Briefs 68(4), 1542–1546 (2021)
Wang, Z., Duanpo, W., Dong, F., Cao, J., Jiang, T., Liu, J.: A novel spike detection algorithm based on multi-channel of BECT EEG signals. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3592–3596 (2020)
Dinghan, H., Cao, J., Lai, X., Liu, J., Wang, S., Ding, Y.: Epileptic signal classification based on synthetic minority oversampling and blending algorithm. IEEE Trans. Cogn. Develop. Syst. 13(2), 368–382 (2021)
Zhendi, X., Wang, T., Cao, J., Bao, Z., Jiang, T., Gao, F.: BECT spike detection based on novel EEG sequence features and LSTM algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1734–1743 (2021)
Cao, J., Dinghan, H., Wang, Y., Wang, J., Lei, B.: Epileptic classification with deep-transfer-learning-based feature fusion algorithm. IEEE Trans. Cogn. Develop. Syst. 14(2), 684–695 (2022)
Cao, J., Zhu, J., Wenbin, H., Kummert, A.: Epileptic signal classification with deep EEG features by stacked CNNs. IEEE Trans. Cogn. Develop. Syst. 12(4), 709–722 (2020)
Cao, J., et al.: Unsupervised eye blink artifact detection from EEG with gaussian mixture model. IEEE J. Biomed. Health Inform. 25(8), 2895–2905 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Ethical Standards
This study has been approved by the Second Affiliated Hospital of Zhejiang University and registered in Chinese Clinical Trail Registry (ChiCTR1900020726). All patients gave their informed consent prior to their inclusion in the study.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, Y. et al. (2023). Coherence Matrix Based Early Infantile Epileptic Encephalopathy Analysis with ResNet. In: Sun, F., Cangelosi, A., Zhang, J., Yu, Y., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2022. Communications in Computer and Information Science, vol 1787. Springer, Singapore. https://doi.org/10.1007/978-981-99-0617-8_7
Download citation
DOI: https://doi.org/10.1007/978-981-99-0617-8_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-0616-1
Online ISBN: 978-981-99-0617-8
eBook Packages: Computer ScienceComputer Science (R0)