Skip to main content

On Non-linear Maximal Length Cellular Automata

  • Conference paper
  • First Online:
Proceedings of Second Asian Symposium on Cellular Automata Technology (ASCAT 2023)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1443))

Included in the following conference series:

  • 74 Accesses

Abstract

This paper explores non-linear maximal length cellular automata. We show that a cellular automaton (CA) having a blocking word in the information flow of that automaton can never be a maximal length CA. In addition, the notion of isomorphism of cellular automata is applied to devise a decision algorithm for finding non-linear maximal length CA using linear maximal length cellular automaton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Two graphs which contain the same number of vertices connected in the same way are said to be isomorphic.

References

  1. Adak, S.: Maximal Length Cellular Automata. Ph.D. thesis, Indian Institute of Engineering Science and Technology, Shibpur, India (2021)

    Google Scholar 

  2. Adak, S., Mukherjee, S., Das, S.: Do there exist non-linear maximal length cellular automata? A study. In: Proceedings of \({13}^{th}\) International Conference on Cellular Automata for Research and Industry, ACRI 2018, Como, Italy, pp. 289–297 (2018). Accessed from 17–21 Sep 2018

    Google Scholar 

  3. Cattell, K., Muzio, J.C.: Analysis of one-dimensional linear hybrid cellular automata over GF(q). IEEE Trans. Comput. 45(7), 782–792 (1996). https://doi.org/10.1109/12.508317

    Article  MathSciNet  MATH  Google Scholar 

  4. Cattell, K., Muzio, J.C.: Synthesis of one-dimensional linear hybrid cellular automata. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(3), 325–335 (1996)

    Article  MATH  Google Scholar 

  5. Das, S., Roy Chowdhury, D.: Generating cryptographically suitable non-linear maximum length cellular automata. In: Proceedings of 9th International Conference on Cellular Automata for Research and Industry (ACRI), pp. 241–250 (2010)

    Google Scholar 

  6. Das, S., Roy Chowdhury, D.: Cryptographically suitable maximum length cellular automata. J. Cell. Autom. 6(6), 439–459 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Das, S.: Theory and Applications of Nonlinear Cellular Automata In VLSI Design. Ph.D. thesis, Bengal Engineering and Science University, Shibpur, India (2007). http://it.becs.ac.in

  8. Das, S., Sikdar, B.K.: Classification of CA rules targeting synthesis of reversible cellular automata. In: Proceedings of International Conference on Cellular Automata for Research and Industry, ACRI, France, pp. 68–77 (2006)

    Google Scholar 

  9. Ganguly, N., Sikdar, B.K., Pal Chaudhuri, P.: Exploring cycle structures of additive cellular automata. Fund. Inform. 2, 137–154 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Ghosh, S., Sengupta, A., Saha, D., Chowdhury, D.R.: A scalable method for constructing non-linear cellular automata with period \({2^n}-1\). In: Proceedings of 11th International Conference on Cellular Automata for Research and Industry (ACRI), pp. 65–74 (2014)

    Google Scholar 

  11. Hortensius, P.D., McLeod, R.D., Card, H.C.: Parallel random number generation for VLSI systems using cellular automata. IEEE Trans. Comput. 38(10), 1466–1473 (1989)

    Article  Google Scholar 

  12. Hortensius, P.D., Mcleod, R.D., Pries, W., Miller, D.M., Card, H.C.: Cellular automata-based pseudorandom number generators for built-in self-test. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(8), 842–859 (1989)

    Article  Google Scholar 

  13. Kamilya, S., Das, S.: A study of chaos in non-uniform cellular automata. Commun. Nonlinear Sci. Numer. Simul. 76, 116–131 (2019). https://doi.org/10.1016/j.cnsns.2019.04.020

    Article  MathSciNet  MATH  Google Scholar 

  14. Pal Chaudhuri, P., Roy Chowdhury, D., Nandi, S., Chatterjee, S.: Additive Cellular Automata – Theory and Applications, vol. 1. IEEE Computer Society Press, USA, ISBN 0-8186-7717-1 (1997)

    Google Scholar 

  15. Pries, W., Thanailakis, A., Card, H.C.: Group properties of cellular automata and VLSI applications. IEEE Trans. Comput. C-35(12), 1013–1024 (1986)

    Google Scholar 

Download references

Acknowledgements

We express our gratitude to Dr. Sukanta Das for his helpful discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanya Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adak, S., Mukherjee, S. (2023). On Non-linear Maximal Length Cellular Automata. In: Das, S., Martinez, G.J. (eds) Proceedings of Second Asian Symposium on Cellular Automata Technology. ASCAT 2023. Advances in Intelligent Systems and Computing, vol 1443. Springer, Singapore. https://doi.org/10.1007/978-981-99-0688-8_10

Download citation

Publish with us

Policies and ethics