Abstract
Computer interaction and public safety have great research significance and practical value. Because of the problem that the recurrent neural network used in the existing literature will produce gradient disappearance and gradient explosion when the video sequence is long. Then, we propose a Person Re-identification Network with ConvLSTM (CLPRN) network based on convolutional long and short-term memory networks to solve the short-term memory problem. And then, aiming at the problem of information fusion between frames, we propose a Person Re-identification Network with Graph Convolution (GCPRN) network based on the graph structure, introduce a multi-header attention mechanism, and measure the relationship between frames. The experimental results shows that the Rank 1 of the GCPRN network on iLIDS Video re-identification (iLIDS-VID) dataset reaches \(70.58\%\) and Rank 5 reached \(81.20\%\), surpassing the Unsupervised Tracklet Association Learning (UTAL) and Temporal Knowledge Propagation (TKP) algorithm that reached a high level on the iLIDS-VID dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_30
Wang, G.Z., Yuan, Y.F., Chen, X., Li, J.W., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 274–282. Association for Computing Machinery, New York (2018)
Jin, X., Lan, C.L., Zeng, W.J., Wei, G.Q., Chen, Z.B.: Semantics-aligned representation learning for person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11173–11180. AAAI Press, Palo Alto (2020)
Fu, Y., Wang, X.Y., Wei, Y.C., Thomas, H.: STA: spatial-temporal attention for large-scale video-based person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8287–8294. AAAI Press, Palo Alto (2019)
Chen, Z.Q., Zhou, Z.H., Huang, J.C., Zhang, P.Y., Li, B.: Frame-guided region-aligned representation for video person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10591–10598. AAAI Press, Palo Alto (2020)
Chen, H.R., et al.: Deep transfer learning for person re-identification. In: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), pp. 1–5. IEEE (2018)
Wu, Y.M., et al.: Adaptive graph representation learning for video person re-identification. IEEE Trans. Image Process. 29, 8821–8830 (2020)
Zhu, Z.H., et al.: Aware loss with angular regularization for person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 13114–13121. AAAI Press, Palo Alto (2020)
Zhang, G.Q., Chen, Y.H., Dai, Y., Zheng, Y.H., Wu, Y.: Reference-aided part-aligned feature disentangling for video person re-identification. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)
Dahjung, C., Khalid, T., Edward, J.D.: A two stream siamese convolutional neural network for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1983–1991. IEEE (2017)
Wang, T., Gong, S., Zhu, X., Wang, S.: Person re-identification by video ranking. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 688–703. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_45
Zhao, Y.R., Shen, X., Jin, Z.M., Lu, H.T., Hua, X.S.: Attribute-driven feature disentangling and temporal aggregation for video person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4913–4922. IEEE (2019)
Xu, S.J., et al.: Jointly attentive spatial-temporal pooling networks for video-based person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4733–4742. IEEE (2017)
Arulkumar, S., Athira, N., Anurag, M.: Co-segmentation inspired attention networks for video-based person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, pp. 562–572 (2019)
Ma, Z.A., Xiang, Z.Y.: Robust object tracking with RGBD-based sparse learning. Front. Inf. Technol. Electron. Eng. 18(7), 989–1001 (2017)
Chen, D.P., Li, H.S., Xiao, T., Yi, S., Wang, X.G.: Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1169–1178. IEEE (2018)
Li, J.N., Wang, J.D., Tian, Q., Gao, W., Zhang, S.L.: Global-local temporal representations for video person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3958–3967. IEEE (2019)
Liu, H., et al.: Video-based person re-identification with accumulative motion context. IEEE Trans. Circ. Syst. Video Technol. 28(10), 2788–2802 (2017)
Song, G., Leng, B., Liu, Y., Hetang, C., Cai, S.: Region-based quality estimation network for large-scale person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7347–7354. AAAI Press, Palo Alto (2018)
Li, Y.J., et al.: Video-based person re-identification by deep feature guided pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 39–46. IEEE (2017)
Shi, X.J., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 802–810. Curran Associates, Inc (2015)
Karanam, S., Li, Y., Radke, R.J.: Sparse re-id: block sparsity for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 33–40. IEEE (2015)
Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: BMVC 2008–19th British Machine Vision Conference, Leeds, United Kingdom, pp. 1–10 (2008)
Li, M.X., Zhu, X.T., Gong, S.G.: Unsupervised tracklet person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 42(7), 1770–1782 (2019)
Gu, X.Q., Ma, B.P., Chang, H., Shan, S, G., Chen, X.L.: Temporal knowledge propagation for image-to-video person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9647–9656. IEEE (2019)
Acknowledgements
This study was supported by the Hunan Province Natural Science Foundation (grant number 2022JJ30673).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, Y. et al. (2023). Pedestrian Re-recognition Based on Memory Network and Graph Structure. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_1
Download citation
DOI: https://doi.org/10.1007/978-981-99-0856-1_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-0855-4
Online ISBN: 978-981-99-0856-1
eBook Packages: Computer ScienceComputer Science (R0)