Skip to main content

Deep Fourier Kernel Exploitation in Blind Image Super-Resolution

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1766))

  • 529 Accesses

Abstract

Blind image super-resolution (SR) has achieved great progress through estimating and utilizing blur kernels. However, current predefined dimension-stretching strategy based methods trivially concatenate or modulate the vectorized blur kernel with the low-resolution image, resulting in raw blur kernels under-utilized and also limiting generalization. This paper proposes a deep Fourier kernel exploitation framework to model the explicit correlation between raw blur kernels and images without dimensionality reduction. Specifically, based on the acknowledged degradation model, we decouple the effects of downsampling and the blur kernel, and reverse them by the upsampling and deconvolution modules accordingly, via introducing a transitional SR image. Then we design a novel Kernel Fast Fourier Convolution (KFFC) to filter the image feature of the transitional image with the raw blur kernel in the frequency domain. Extensive experiments show that our methods achieve favorable and robust results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1122–1131 (2017)

    Google Scholar 

  2. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European Conference on Computer Vision, pp. 252–268 (2018)

    Google Scholar 

  3. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  4. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference, pp. 135.1–135.10 (2012)

    Google Scholar 

  5. Chen, H., et al.: Real-world single image super-resolution: a brief review. Inf. Fusion 79, 124–145 (2021)

    Article  Google Scholar 

  6. Chi, L., Jiang, B., Mu, Y.: Fast Fourier convolution. In: Advances in Neural Information Processing Systems, pp. 4479–4488 (2020)

    Google Scholar 

  7. Cornillere, V., Djelouah, A., Yifan, W., Sorkine-Hornung, O., Schroers, C.: Blind image super-resolution with spatially variant degradations. ACM Trans. Graph. 38(6), 1–13 (2019)

    Article  Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  9. Dong, J., Roth, S., Schiele, B.: Deep wiener deconvolution: wiener meets deep learning for image deblurring. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1048–1059 (2020)

    Google Scholar 

  10. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1604–1613 (2019)

    Google Scholar 

  11. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  12. Huang, Y., Li, S., Wang, L., Tan, T., et al.: Unfolding the alternating optimization for blind super resolution. In: Advances in Neural Information Processing Systems, vol. 33, pp. 5632–5643 (2020)

    Google Scholar 

  13. Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 466–467 (2020)

    Google Scholar 

  14. Jo, Y., Oh, S.W., Vajda, P., Kim, S.J.: Tackling the ill-posedness of super-resolution through adaptive target generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16236–16245 (2021)

    Google Scholar 

  15. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  17. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  18. Liang, J., Sun, G., Zhang, K., et al.: Mutual affine network for spatially variant kernel estimation in blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4096–4105 (2021)

    Google Scholar 

  19. López-Tapia, S., de la Blanca, N.P.: Fast and robust cascade model for multiple degradation single image super-resolution. IEEE Trans. Image Process. 30, 4747–4759 (2021)

    Article  Google Scholar 

  20. Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T.: Learning the degradation distribution for blind image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6063–6072 (2022)

    Google Scholar 

  21. Maeda, S.: Unpaired image super-resolution using pseudo-supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 291–300 (2020)

    Google Scholar 

  22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  23. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 76(20), 21811–21838 (2017)

    Article  Google Scholar 

  24. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Deblurring images via dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2315–2328 (2017)

    Article  Google Scholar 

  25. Riegler, G., Schulter, S., Ruther, M., Bischof, H.: Conditioned regression models for non-blind single image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 522–530 (2015)

    Google Scholar 

  26. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  27. Shocher, A., Cohen, N., Irani, M.: “Zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  28. Tao, G., et al.: Spectrum-to-kernel translation for accurate blind image super-resolution. In: Advances in Neural Information Processing Systems, vol. 34, pp. 22643–22654 (2021)

    Google Scholar 

  29. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  30. Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10581–10590 (2021)

    Google Scholar 

  31. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision Workshops (2018)

    Google Scholar 

  32. Xiao, J., Yong, H., Zhang, L.: Degradation model learning for real-world single image super-resolution. In: ACCV (2020)

    Google Scholar 

  33. Xu, Y.S., Tseng, S.Y.R., Tseng, Y., Kuo, H.K., Tsai, Y.M.: Unified dynamic convolutional network for super-resolution with variational degradations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12496–12505 (2020)

    Google Scholar 

  34. Zamir, S.W., et al.: CycleISP: real image restoration via improved data synthesis. In: CVPR (2020)

    Google Scholar 

  35. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  36. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3271 (2018)

    Google Scholar 

  37. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  38. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (62271308), STCSM (No. 22511105700, No. 18DZ2270700), 111 plan (No. BP0719010), and State Key Laboratory of UHD Video and Audio Production and Presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, Y., Zhang, X., Huang, Y., Zhang, Y., Wang, Y. (2023). Deep Fourier Kernel Exploitation in Blind Image Super-Resolution. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0856-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0855-4

  • Online ISBN: 978-981-99-0856-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics