Skip to main content

Latent Energy Based Model with Classifier Guidance

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1766))

  • 506 Accesses

Abstract

Energy-based generation models have attracted plenty of attention in last few years, but there is a lack of guidance on how to generate a condition-specific samples. In this work, we propose an energy based framework with an autoencoder and a standard discriminative classifier. Within this framework, we demonstrate that classifier can be reinterpreted as an EBM and we can accelerate sampling with fast MCMC in latent space of autoencoder. Both latent EBM and autoencoder can be learned jointly by maximum likelihood. Ultimately, our experimental results show that the trained model exhibits decent performance in both unconditional and conditional generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  2. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  3. Du, Y., Mordatch, I.: Implicit generation and modeling with energy based models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  4. Gao, R., Song, Y., Poole, B., et al.: Learning energy-based models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125 (2020)

  5. Grathwohl, W., Wang, K.C., Jacobsen, J.H., et al.: Your classifier is secretly an energy based model and you should treat it like one. arXiv preprint arXiv:1912.03263 (2019)

  6. Pang, B., Wu, Y.N.: Latent space energy-based model of symbol-vector coupling for text generation and classification. In: International Conference on Machine Learning, pp. 8359–8370. PMLR (2021)

    Google Scholar 

  7. LeCun, Y., Chopra, S., Hadsell, R., et al.: A tutorial on energy-based learning. Predicting Struct. Data 1(0) (2006)

    Google Scholar 

  8. Zhao, Y., Xie, J., Li, P.: Learning energy-based generative models via coarse-to-fine expanding and sampling. In: International Conference on Learning Representations (2020)

    Google Scholar 

  9. Geng, C., Wang, J., Gao, Z., et al.: Bounds all around: training energy-based models with bidirectional bounds. In: Advances in Neural Information Processing Systems, vol. 34, pp. 19808–19821 (2021)

    Google Scholar 

  10. Kumar, R., Ozair, S., Goyal, A., et al.: Maximum entropy generators for energy-based models. arXiv preprint arXiv:1901.08508 (2019)

  11. Arbel, M., Zhou, L., Gretton, A.: Generalized energy based models. arXiv preprint arXiv:2003.05033 (2020)

  12. Pang, B., Han, T., Nijkamp, E., et al.: Learning latent space energy-based prior model. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21994–22008 (2020)

    Google Scholar 

  13. Xiao, Z., Kreis, K., Kautz, J., et al.: VAEBM: a symbiosis between variational autoencoders and energy-based models. arXiv preprint arXiv:2010.00654 (2020)

  14. Xie, J., Lu, Y., Gao, R., et al.: Cooperative learning of energy-based model and latent variable model via MCMC teaching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  15. Yoon, S., Noh, Y.K., Park, F.: Autoencoding under normalization constraints. In: International Conference on Machine Learning, pp. 12087–12097. PMLR (2021)

    Google Scholar 

  16. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 (2016)

  17. Zhai, S., Cheng, Y., Lu, W., et al.: Deep structured energy based models for anomaly detection. In: International Conference on Machine Learning, pp. 1100–1109. PMLR (2016)

    Google Scholar 

  18. Pidhorskyi, S., Almohsen, R., Doretto, G.: Generative probabilistic novelty detection with adversarial autoencoders. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  19. Brehmer, J., Cranmer, K.: Flows for simultaneous manifold learning and density estimation. In: Advances in Neural Information Processing Systems, vol. 33, pp. 442–453 (2020)

    Google Scholar 

  20. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-generating distribution. J. Mach. Learn. Res. 15(1), 3563–3593 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  22. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  23. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Bergmann, P., Löwe, S., Fauser, M., et al.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv preprint arXiv:1807.02011 (2018)

  26. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  27. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  28. He, K., Zhang, X.: Shaoqing Ren, and Jian Sun. deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  30. Heusel, M., Ramsauer, H., Unterthiner, T., et al.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  31. Nijkamp, E., Hill, M., Zhu, S.C., et al.: Learning non-convergent non-persistent short-run MCMC toward energy-based model. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  32. Ghosh, P., Sajjadi, M.S., Vergari, A., Black, M., Scholkopf, B.: From variational to deterministic autoencoders. In International Conference on Learning Representations (2020)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (NSFC) under grant 61927809. Here, the authors thank all anonymous reviewers as well as the processing area chair for their valuable comments on an earlier version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, W., Wang, J. (2023). Latent Energy Based Model with Classifier Guidance. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0856-1_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0855-4

  • Online ISBN: 978-981-99-0856-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics