Skip to main content

Surrogate Model-Assisted Evolutionary Algorithms for Parameter Identification of Electrochemical Model of Lithium-Ion Battery: A Comparison Study

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2022)

Abstract

Lithium-ion batteries are widely used in various fields due to their high energy density and long cycling life. However, over-charge, over-discharge, and over-heating will cause the battery’s performance to drop rapidly and even cause safety crises. The parameters of an electrochemical model are critical to making lithium-ion batteries operate safely because they can help indicate the internal states of the battery. Thus, it is significant to identify the parameters of the electrochemical model of lithium-ion batteries. The parameter identification of the electrochemical model of lithium-ion batteries is a complex expensive optimization problem intrinsically. Surrogate model-assisted evolutionary algorithms have been designed to solve this problem, but the choice of surrogate models is still an open question. A suitable surrogate model can reduce the number of time-consuming simulations of the electrochemical model; thus, it can improve the identification accuracy significantly. However, how to select a proper surrogate model has not been studied adequately. In view of this, this paper compares seven different surrogate models’ performance for parameter identification and aims to provide some insights for future researchers when choosing surrogate models. Extensive simulations show that the support vector regression (SVR) model would be a good choice to aid the parameter identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awad, M., Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Springer, Cham (2015). https://doi.org/10.1007/978-1-4302-5990-9_4

    Chapter  Google Scholar 

  2. Boovaragavan, V., Harinipriya, S., Subramanian, V.R.: Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models. J. Power Sources 183(1), 361–365 (2008)

    Article  Google Scholar 

  3. Cox, D.D., John, S.: A statistical method for global optimization. In: Proceedings of the 1992 IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 1241–1246 (1992). https://doi.org/10.1109/ICSMC.1992.271617

  4. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011). https://doi.org/10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  5. Fleischer, C., Waag, W., Heyn, H.M., Sauer, D.U.: On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation. J. Power Sources 262, 457–482 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.046. https://www.sciencedirect.com/science/article/pii/S0378775314003590

  6. Guo, M., Kim, G.H., White, R.E.: A three-dimensional multi-physics model for a Li-ion battery. J. Power Sources 240, 80–94 (2013)

    Article  Google Scholar 

  7. Han, S., Qubo, C., Meng, H.: Parameter selection in SVM with RBF kernel function. In: World Automation Congress 2012, pp. 1–4 (2012)

    Google Scholar 

  8. Jokar, A., Rajabloo, B., Désilets, M., Lacroix, M.: An inverse method for estimating the electrochemical parameters of lithium-ion batteries. J. Electrochemical Soc. 163(14), A2876–A2886 (2016)

    Google Scholar 

  9. Kim, M., et al.: Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search. Appl. Energy 254, 113644 (2019)

    Article  Google Scholar 

  10. Li, J., Zou, L., Feng, T., Dong, X., Zou, Z., Yang, H.: Parameter identification of lithium-ion batteries model to predict discharge behaviors using heuristic algorithm. J. Electrochemical Soc. 163 (2016)

    Google Scholar 

  11. Li, W., et al.: Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries. Appl. Energy 269, 115104 (2020)

    Article  Google Scholar 

  12. Lipu, M.H., et al.: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod. 205, 115–133 (2018)

    Article  Google Scholar 

  13. Liu, B., Yang, H., Lancaster, M.J.: Global optimization of microwave filters based on a surrogate model-assisted evolutionary algorithm. IEEE Trans. Microw. Theory Tech. 65(6), 1976–1985 (2017). https://doi.org/10.1109/TMTT.2017.2661739

    Article  Google Scholar 

  14. Liu, B., et al.: Safety issues caused by internal short circuits in lithium-ion batteries. J. Mater. Chem. A 6(43), 21475–21484 (2018)

    Article  Google Scholar 

  15. Liu, K., Li, K., Peng, Q., Zhang, C.: A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 14(1), 47–64 (2019)

    Article  Google Scholar 

  16. Lu, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    Article  Google Scholar 

  17. Nasr, M.S., Moustafa, M.A., Seif, H.A., El Kobrosy, G.: Application of artificial neural network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-Egypt. Alexandria Eng. J. 51(1), 37–43 (2012)

    Google Scholar 

  18. Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4(3), 313–332 (1990). https://doi.org/10.1080/02693799008941549

    Article  Google Scholar 

  19. Plett, G.L.: Battery Management Systems, Volume II: Equivalent-Circuit Methods. Artech House (2015)

    Google Scholar 

  20. Rahman, M.A., Anwar, S., Izadian, A.: Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. J. Power Sources 307, 86–97 (2016)

    Article  Google Scholar 

  21. Ramadesigan, V., Northrop, P.W.C., De, S., Santhanagopalan, S., Braatz, R.D., Subramanian, V.R.: Modeling and simulation of lithium-ion batteries from a systems engineering perspective. J. Electrochemical Soc. 159 (2010)

    Google Scholar 

  22. Seaman, A., Dao, T.S., McPhee, J.: A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Sources 256, 410–423 (2014)

    Article  Google Scholar 

  23. She, C., Wang, Z., Sun, F., Liu, P., Zhang, L.: Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network. IEEE Trans. Ind. Inf. 16(5), 3345–3354 (2019)

    Article  Google Scholar 

  24. Shokry, A., Espuña, A.: The ordinary kriging in multivariate dynamic modelling and multistep-ahead prediction. In: Friedl, A., Klemeš, J.J., Radl, S., Varbanov, P.S., Wallek, T. (eds.) 28th European Symposium on Computer Aided Process Engineering, Computer Aided Chemical Engineering, vol. 43, pp. 265–270. Elsevier (2018). https://doi.org/10.1016/B978-0-444-64235-6.50047-4. https://www.sciencedirect.com/science/article/pii/B9780444642356500474

  25. Singh, A., Izadian, A., Anwar, S.: Model based condition monitoring in lithium-ion batteries. J. Power Sources 268, 459–468 (2014)

    Article  Google Scholar 

  26. Storn, R.: On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing, pp. 519–523 (1996). https://doi.org/10.1109/NAFIPS.1996.534789

  27. Viana, F., Haftka, R.: Importing Uncertainty Estimates from One Surrogate to Another. https://doi.org/10.2514/6.2009-2237. https://arc.aiaa.org/doi/abs/10.2514/6.2009-2237

  28. Xiong, R., Li, L., Tian, J.: Towards a smarter battery management system: a critical review on battery state of health monitoring methods. J. Power Sources 405, 18–29 (2018)

    Article  Google Scholar 

  29. Zhou, Y., Wang, B.C., Li, H.X., Yang, H.D., Liu, Z.: A surrogate-assisted teaching-learning-based optimization for parameter identification of the battery model. IEEE Trans. Ind. Inform. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Chuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, YB., Wang, BC., Liu, ZZ. (2023). Surrogate Model-Assisted Evolutionary Algorithms for Parameter Identification of Electrochemical Model of Lithium-Ion Battery: A Comparison Study. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1549-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1548-4

  • Online ISBN: 978-981-99-1549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics