Abstract
The performance impact and damage of ship propulsion shafting mainly come from vibration. The main causes of the longitudinal vibration of the propulsion shafting are the propeller excitation force and the ship power mechanical excitation. Longitudinal vibration not only harms the ship’s stealth capabilities but also shortens the life of the propulsion shafting components. Due to its significant advantages in low-frequency vibration control, active control has become an important vibration control strategy. This paper dis-cusses the basic principle and modeling method of active control of longitudinal vibration of shafting, summarizes the active control strategy of longitudinal vibration of shafting suitable for engineering application, and finally suggests things on the future development direction of active control technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carlton, J.: Marine Propellers and Propulsion. Butterworth-Heinemann, Oxford (2018)
Tamura, Y., Kawada, T., Sasazawa, Y.: Effect of ship noise on sleep. J. Sound Vib. 205(4), 417–425 (1997)
Lin, T.R., Pan, J., O’Shea, P.J., Mechefske, C.K.: A study of vibration and vibration control of ship structures. Mar. Struct. 22(4), 730–743 (2009)
Yuanchao, Z., Wei, X., Zhengmin, L., Jiangyang, H.: Review of the vibration isolation technology of submarine thrust bearing. In: 2019 25th International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE (2019)
Soong, T.T., Masri, S.F., Housner, G.W.: An overview of active structural control under seismic loads. Earthq. Spectra 7(3), 483–505 (1991)
Vizentin, G., Vukelić, G., Srok, M.: Common failures of ship propulsion shafts. Pomorstvo. 31(2), 85–90 (2017)
Zhang, G., Zhao, Y., Li, T., Zhu, X.: Propeller excitation of longitudinal vibration characteristics of marine propulsion shafting system. Shock Vib. (2014)
Huang, Q., Zhang, C., Jin, Y., Yuan, C., Yan, X.: Vibration analysis of marine propulsion shafting by the coupled finite element method. J. Vibroeng. 17(7), 3392–3403 (2015)
Zhang, Y., Xu, W., Li, Z., He, J., Yin, L.: Dynamic characteristics analysis of marine propulsion shafting using multi-DOF vibration coupling model. Shock Vib. (2019)
Poole, R.: The axial vibration of diesel engine crankshafts. Proc. Inst. Mech. Eng. 146(1), 167–182 (1941)
Murawski, L.: Axial vibrations of a propulsion system taking into account the couplings and the boundary conditions. J. Mar. Sci. Technol. 9(4), 171–181 (2004)
Shu, G.Q., Liang, X.Y., Lu, X.C.: Axial vibration of high-speed automotive engine crankshaft. Int. J. Veh. Des. 45(4), 542–554 (2007)
Visser, N.J.: The axial stiffness of marine diesel engine crankshafts. Int. Shipbuild. Prog. 15(168), 302–316 (1968)
van Wijngaarden, E.: Recent developments in predicting propeller-induced hull pressure pulses. In: Proceedings of the 1st International Ship Noise and Vibration Conference, pp. 1–8 (2005)
Sontvedt, T.: Propeller induced excitation forces. Eur. Shipbuild. 20(3) (1971)
Kumai, T., Tamaki, I., Kishi, J., Yumoto, H., Sakurada, Y.: On a method of measurement of propeller bearing force exciting hull vibrations. J. Soc. Naval Architects Japan 1970(128), a85–a90 (1970)
Rigby, C.: Longitudinal vibration of marine propeller shafting. Trans. Inst. Mar. Eng. 60, 67–78 (1948)
Parsons, M.G.: Mode coupling in torsional and longitudinal shafting vibrations. Mar. Technol. SNAME News 20(03), 257–271 (1983)
Sverko, D.: Torsional-axial coupling in the line shafting vibrations in merchant ocean going ships (Doctoral dissertation, Concordia University) (1997)
Van Dort, D., Visser, N.J.: Crankshaft coupled free torsional-axial vibrations of a ship’s propulsion system1. Int. Shipbuild. Prog. 10(109), 333–350 (1963). https://doi.org/10.3233/isp-1963-1010902
Lewis, D.W., Allaire, P.E., Thomas, P.W.: Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 1: system natural frequencies and laboratory scale model. Tribol. Trans. 32(2), 170–178 (1989)
Lewis, D.W., Humphris, R.R., Thomas, P.W.: Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 2: control analysis and response of experimental system. Tribol. Trans. 32(2), 179–188 (1989)
Baz, A., Gilheany, J., Steimel, P.: Active vibration control of propeller shafts. J. Sound Vib. 136(3), 361–372 (1990)
Goodwin, A.J.H.: The design of a resonance changer to overcome excessive axial vibration of propeller shafting. Trans. Inst. Mar. Eng 72, 37–63 (1960)
Dylejko, P., Kessissoglou, N.: Minimization of the vibration transmission through the propeller-shafting system in a submarine. J. Acoust. Soc. Am. 116(4), 2569 (2004)
Dylejko, P.G.: Optimum resonance changer for submerged vessel signature reduction (Doctoral dissertation, UNSW Sydney) (2007)
Dylejko, P.G., Kessissoglou, N.J., Tso, Y., Norwood, C.J.: Optimization of a resonance changer to minimise the vibration transmission in marine vessels. J. Sound Vib. 300(1–2), 101–116 (2007)
Pan, J., Farag, N., Lin, T., Juniper, R.: Propeller induced structural vibration through the thrust bearing. In: Proceedings of the Annual Conference of the Australian Acoustical Society, pp. 13–15 (2002)
Craig Jr, R.R.: Substructure methods in vibration (1995)
Jen, C.W., Johnson, D.A., Dubois, F.: Numerical modal analysis of structures based on a revised substructure synthesis approach. J. Sound Vib. 180(2), 185–203 (1995)
Fahy, F.J., Gardonio, P.: Sound and Structural Vibration: Radiation, Transmission, and Response. Elsevier, Amsterdam (2007)
Parsons, M.G., Vorus, W.S., Richard, E.M.: Added mass and damping of vibrating propellers. University of Michigan (1980)
Jakeman, R.W.: Influence of stern tube bearings on lateral vibration amplitudes in marine propeller shafting. Tribol. Int. 22(2), 125–136 (1989)
Sam, Y.M., Osman, J.H., Ghani, M.R.A.: A class of proportional-integral sliding mode control with application to active suspension system. Syst. Control Lett. 51(3–4), 217–223 (2004)
Lan, K.J., Yen, J.Y., Kramar, J.A.: Sliding mode control for active vibration isolation of a long-range scanning tunneling microscope. Rev. Sci. Instrum. 75(11), 4367–4373 (2004)
Hu, Q.: Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dyn. 52(3), 227–248 (2008)
Yang, Z., Hicks, D.L.: Active noise attenuation using adaptive model predictive control. In: 2005 International Symposium on Intelligent Signal Processing and Communication Systems, pp. 241–244. IEEE (2005)
Wills, A.G., Bates, D., Fleming, A.J., Ninness, B., Moheimani, S.R.: Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans. Control Syst. Technol. 16(1), 3–12 (2007)
Kuo, S.M., Morgan, D.R.: Active Noise Control Systems, vol. 4. Wiley, New York (1996)
Kinney, C.E., De Callafon, R.A.: An adaptive internal model-based controller for periodic disturbance rejection. IFAC Proc. 39(1), 273–278 (2006)
Milic, L. (ed.): Multirate Filtering for Digital Signal Processing: MATLAB Applications. IGI Global, Hershey (2009)
Widrow, B., Walach, E.: Adaptive signal processing for adaptive control. IFAC Proc. 16(9), 7–12 (1983)
Aström, K.J., Goodwin, G.C., Kumar, P.R. (eds.): Adaptive Control, Filtering, and Signal Processing, vol. 74. Springer Science & Business, Cham (2012)
Vér, I.L., Beranek, L.L. (eds.): Noise and Vibration Control Engineering: Principles and Applications. John Wiley & Sons, Hoboken (2005)
Pontana, F., et al.: Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur. Radiol. 21(3), 627–635 (2011)
Meurers, T., Veres, S.M., Elliot, S.J.: Frequency selective feedback for active noise control. IEEE Control Syst. Mag. 22(4), 32–41 (2002)
Meurers, T., Veres, S.M., Tan, A.C.H.: Model-free frequency domain iterative active sound and vibration control. Control. Eng. Pract. 11(9), 1049–1059 (2003)
Morgan, D.: An analysis of multiple correlation cancellation loops with a filter in the auxiliary path. IEEE Trans. Acoust. Speech Signal Process. 28(4), 454–467 (1980)
Burgess, J.C.: Active adaptive sound control in a duct: a computer simulation. J. Acoust. Soc. Am. 70(3), 715–726 (1981)
Douglas, S.C.: Fast implementations of the filtered-X LMS and LMS algorithms for multichannel active noise control. IEEE Trans. Speech Audio Proc. 7(4), 454–465 (1999). https://doi.org/10.1109/89.771315
Gong, C., Wu, M., Guo, J., et al.: Statistical analysis of multichannel F-x LMS algorithm for narrowband active noise control. Signal Proc. 108646 (2022)
Zhang, F., Sun, W., Liu, C., et al.: Application of multichannel active vibration control in a multistage gear transmission system. Shock Vib. 2022 (2022)
Shi, D., Gan, W.S., He, J., et al.: Practical implementation of multichannel filtered-x least mean square algorithm based on the multiple-parallel-branch with folding architecture for large-scale active noise control. IEEE Trans. Very Large-Scale Integr. (VLSI) Syst. 28(4) 940–953 (2019)
Fuller, C.R., Rogers, C.A., Robertshaw, H.H.: Control of sound radiation with active/adaptive structures. J. Sound Vib. 157(1), 19–39 (1992)
Vipperman, J.S., Burdisso, R.A., Fuller, C.R.: Active control of broadband structural vibration using the LMS adaptive algorithm. J. Sound Vib. 166(2), 283–299 (1993)
Guigou, C., Fuller, C.R., Wagstaff, P.R.: Active isolation of vibration with adaptive structures. J. Acoust. Soc. Am. 96(1), 294–299 (1994)
Cabell, R.H., Fuller, C.R.: A principal component algorithm for feedforward active noise and vibration control. J. Sound Vib. 227(1), 159–181 (1999)
Zhang, Z., Huang, X., Chen, Y., Hua, H.: Underwater sound radiation control by active vibration isolation: an experiment. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 223(4), 503–515 (2009)
Zhang, Z., Hu, F., Wang, J.: On saturation suppression in adaptive vibration control. J. Sound Vib. 329(9), 1209–1214 (2010)
Zhang, Z.Y., Hu, F., Hua, H.X.: Simulation and experiment on active vibration isolation with an adaptive method. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 224(3), 225–238 (2010)
Zhang, Z., Chen, Y., Li, H., Hua, H.: Simulation and experimental study on vibration and sound radiation control with piezoelectric actuators. Shock. Vib. 18(1–2), 343–354 (2011)
Zhang, Z., Hu, F., Li, Z., Hua, H.: Modeling and control of the vibration of two beams coupled with fluid and active links. Shock. Vib. 19(4), 653–668 (2012)
Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation (2013)
Bohn, C., Cortabarria, A., Härtel, V., Kowalczyk, K.: Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control. Eng. Pract. 12(8), 1029–1039 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, W., Zhu, K., Zhang, H. (2023). A Review of Longitudinal Vibration and Vibration Reduction Technology of Propulsion Shafting. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_43
Download citation
DOI: https://doi.org/10.1007/978-981-99-1549-1_43
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-1548-4
Online ISBN: 978-981-99-1549-1
eBook Packages: Computer ScienceComputer Science (R0)