Skip to main content

A Sensitive Nanothermometer Based on DNA Triplex Structure

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1801))

Abstract

DNA has been used to construct a variety of nanoscale thermometers due to its unique thermodynamic properties. It has proven to be one of the most promising, yet challenging aspects of DNA-based thermometers, to obtain significant signal changes when the temperature changes slightly. Here, we propose a strategy to construct nanoscale thermometers with sensitive temperature responses based on DNA triplex. The thermometers consist of a CT-rich DNA strand and stabilizing strands, whose conformations vary with temperature. By adjusting the sequence design or introducing mismatch bases in stabilizing strands, the temperature response interval of the thermometer can be reduced to 7\(\,^\circ \text {C}\), which lead to higher sensitivity compared to the interval of 12–15\(\,^\circ \text {C}\)  for conventional designs. The temperature responses of the thermometer are characterized by fluorescence experiments. The fluorescence kinetics experiments demonstrate the good repeatability. The design of the nanothermometer will be helpful for constructing advanced nanosystem with sensitive temperature responses as well as long service times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cramer, M.N., Gagnon, D., Laitano, O., Crandall, C.G.: Human temperature regulation under heat stress in health, disease, and injury. Physiol. Rev. 102(4), 1907–1989 (2022)

    Article  Google Scholar 

  2. Quint, M., Delker, C., Franklin, K.A., Wigge, P.A., Halliday, K.J., van Zanten, M.: Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2, 15190 (2016)

    Article  Google Scholar 

  3. Hossain, M.S., et al.: Temperature-responsive nano-biomaterials from genetically encoded farnesylated disordered proteins. ACS Appl. Bio Mater. 5(5), 1846–1856 (2022)

    Article  Google Scholar 

  4. Miotto, M., Armaos, A., Di Rienzo, L., Ruocco, G., Milanetti, E., Tartaglia, G.G.: Thermometer: a webserver to predict protein thermal stability. Bioinformatics 38(7), 2060–2061 (2022)

    Article  Google Scholar 

  5. Kang-Mieler, J.J., Mieler, W.F.: Thermo-responsive hydrogels for ocular drug delivery. Dev. Ophthalmol. 55, 104–111 (2016)

    Article  Google Scholar 

  6. Ahmed, K., Zaidi, S.F., Mati Ur, R., Rehman, R., Kondo, T.: Hyperthermia and protein homeostasis: cytoprotection and cell death. J. Therm. Biol 91, 102615 (2020)

    Article  Google Scholar 

  7. Song, K., Zhao, R., Wang, Z.L., Yang, Y.: Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31(36), e1902831 (2019)

    Article  Google Scholar 

  8. Guo, S., Yi, W., Liu, W.: Biological thermometer based on the temperature sensitivity of magnetic nanoparticle parashift. Nanotechnology 33(9), 095501 (2021)

    Article  Google Scholar 

  9. Uchiyama, S., et al.: A cell-targeted non-cytotoxic fluorescent nanogel thermometer created with an imidazolium-containing cationic radical initiator. Angew. Chem. Int. Ed. 57(19), 5413–5417 (2018)

    Article  Google Scholar 

  10. Qiao, J., et al.: Intracellular temperature sensing by a ratiometric fluorescent polymer thermometer. J. Mat. Chem. B 2(43), 7544–7550 (2014)

    Article  Google Scholar 

  11. Balcytis, A., Ryu, M., Juodkazis, S., Morikawa, J.: Micro-thermocouple on nano-membrane: Thermometer for nanoscale measurements. Sci. Rep. 8(1), 6324 (2018)

    Article  Google Scholar 

  12. Khan, W.U., Qin, L., Alam, A., Zhou, P., Peng, Y., Wang, Y.: Fluorescent carbon dots an effective nano-thermometer in vitro applications. ACS Appl. Bio Mater. 4(7), 5786–5796 (2021)

    Article  Google Scholar 

  13. Mrinalini, M., Prasanthkumar, S.: Recent advances on stimuli-responsive smart materials and their applications. ChemPlusChem 84(8), 1103–1121 (2019)

    Article  Google Scholar 

  14. Thapa, K.B., et al.: Single-metallic thermoresponsive coordination network as a dual-parametric luminescent thermometer. ACS Appl. Mater. Interfaces. 13(30), 35905–35913 (2021)

    Article  Google Scholar 

  15. Gong, P., et al.: In situ temperature-compensated DNA hybridization detection using a dual-channel optical fiber sensor. Anal. Chem. 93(30), 10561–10567 (2021)

    Article  Google Scholar 

  16. López-García, P., Forterre, P.: DNA topology in hyperthermophilic archaea: Reference states and their variation with growth phase, growth temperature, and temperature stresses. Mol. Microbiol. 23(6), 1267–1279 (1997)

    Article  Google Scholar 

  17. Lee, M.H., Lin, H.Y., Yang, C.N.: A DNA-based two-way thermometer to report high and low temperatures. Anal. Chim. Acta 1081, 176–183 (2019)

    Article  Google Scholar 

  18. Bu, C., Mu, L., Cao, X., Chen, M., She, G., Shi, W.: DNA nanostructure-based fluorescence thermometer with silver nanoclusters. Nanotechnology 29(29), 295501 (2018)

    Article  Google Scholar 

  19. Liu, X., et al.: Photothermal detection of microrna using a horseradish peroxidase-encapsulated DNA hydrogel with a portable thermometer. Front. Bioeng. Biotechnol. 9, 799370 (2021)

    Article  Google Scholar 

  20. Liu, T., Yu, T., Zhang, S., Wang, Y., Zhang, W.: Thermodynamic and kinetic properties of a single base pair in a-DNA and b-DNA. Phys. Rev. E 103(4–1), 042409 (2021)

    Article  Google Scholar 

  21. Chao, J., Liu, H., Su, S., Wang, L., Huang, W., Fan, C.: Structural DNA nanotechnology for intelligent drug delivery. Small 10(22), 4626–4635 (2014)

    Article  Google Scholar 

  22. Tashiro, R., Sugiyama, H.: The molecular-thermometer based on b-z transition of DNA. Nucleic Acids 48(1), 89–90 (2004)

    Google Scholar 

  23. Bu, C., Mu, L., Cao, X., Chen, M., She, G., Shi, W.: Silver nanowire-based fluorescence thermometer for a single cell. ACS Appl. Mater. Interfaces. 10(39), 33416–33422 (2018)

    Article  Google Scholar 

  24. Drake, T.J., Tan, W.: Molecular beacon DNA probes and their bioanalytical applications. Appl. Spectrosc. 58(9), 269A-280A (2004)

    Article  Google Scholar 

  25. Miller, I.C., Gamboa Castro, M., Maenza, J., Weis, J.P., Kwong, G.A.: Remote control of mammalian cells with heat-triggered gene switches and photothermal pulse trains. ACS Synth. Biol. 7(4), 1167–1173 (2018)

    Article  Google Scholar 

  26. Yakovchuk, P., Protozanova, E., Frank-Kamenetskii, M.D.: Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34(2), 564–574 (2006)

    Article  Google Scholar 

  27. Xie, N., et al.: Scallop-inspired DNA nanomachine: a ratiometric nanothermometer for intracellular temperature sensing. Anal. Chem. 89(22), 12115–12122 (2017)

    Article  Google Scholar 

  28. Gareau, D., Desrosiers, A., Vallée-Bélisle, A.: Programmable quantitative DNA nanothermometers. Nano Lett. 16(7), 3976–3981 (2016)

    Article  Google Scholar 

  29. Ricci, F., Vallée-Bélisle, A., Porchetta, A., Plaxco, K.W.: Rational design of allosteric inhibitors and activators using the population-shift model: In vitro validation and application to an artificial biosensor. J. Am. Chem. Soc. 134(37), 15177–15180 (2012)

    Article  Google Scholar 

  30. Hahn, J., Shih, W.M.: Thermal cycling of DNA devices via associative strand displacement. Nucleic Acids Res. 47(20), 10968–10975 (2019)

    Article  Google Scholar 

  31. Yamayoshi, A., et al.: Selective and robust stabilization of triplex DNA structures using cationic comb-type copolymers. J. Phys. Chem. B 121(16), 4015–4022 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was sponsored by the National Natural Science Foundation of China (62172171), Zhejiang Lab (2021RD0AB03), the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ056), and the Science and Technology Project of Hebei Education Department (ZD2022098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linqiang Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Hu, Y., Xie, C., Chen, K., Pan, L. (2023). A Sensitive Nanothermometer Based on DNA Triplex Structure. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1549-1_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1548-4

  • Online ISBN: 978-981-99-1549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics