Abstract
DNA has been used to construct a variety of nanoscale thermometers due to its unique thermodynamic properties. It has proven to be one of the most promising, yet challenging aspects of DNA-based thermometers, to obtain significant signal changes when the temperature changes slightly. Here, we propose a strategy to construct nanoscale thermometers with sensitive temperature responses based on DNA triplex. The thermometers consist of a CT-rich DNA strand and stabilizing strands, whose conformations vary with temperature. By adjusting the sequence design or introducing mismatch bases in stabilizing strands, the temperature response interval of the thermometer can be reduced to 7\(\,^\circ \text {C}\), which lead to higher sensitivity compared to the interval of 12–15\(\,^\circ \text {C}\) for conventional designs. The temperature responses of the thermometer are characterized by fluorescence experiments. The fluorescence kinetics experiments demonstrate the good repeatability. The design of the nanothermometer will be helpful for constructing advanced nanosystem with sensitive temperature responses as well as long service times.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cramer, M.N., Gagnon, D., Laitano, O., Crandall, C.G.: Human temperature regulation under heat stress in health, disease, and injury. Physiol. Rev. 102(4), 1907–1989 (2022)
Quint, M., Delker, C., Franklin, K.A., Wigge, P.A., Halliday, K.J., van Zanten, M.: Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2, 15190 (2016)
Hossain, M.S., et al.: Temperature-responsive nano-biomaterials from genetically encoded farnesylated disordered proteins. ACS Appl. Bio Mater. 5(5), 1846–1856 (2022)
Miotto, M., Armaos, A., Di Rienzo, L., Ruocco, G., Milanetti, E., Tartaglia, G.G.: Thermometer: a webserver to predict protein thermal stability. Bioinformatics 38(7), 2060–2061 (2022)
Kang-Mieler, J.J., Mieler, W.F.: Thermo-responsive hydrogels for ocular drug delivery. Dev. Ophthalmol. 55, 104–111 (2016)
Ahmed, K., Zaidi, S.F., Mati Ur, R., Rehman, R., Kondo, T.: Hyperthermia and protein homeostasis: cytoprotection and cell death. J. Therm. Biol 91, 102615 (2020)
Song, K., Zhao, R., Wang, Z.L., Yang, Y.: Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31(36), e1902831 (2019)
Guo, S., Yi, W., Liu, W.: Biological thermometer based on the temperature sensitivity of magnetic nanoparticle parashift. Nanotechnology 33(9), 095501 (2021)
Uchiyama, S., et al.: A cell-targeted non-cytotoxic fluorescent nanogel thermometer created with an imidazolium-containing cationic radical initiator. Angew. Chem. Int. Ed. 57(19), 5413–5417 (2018)
Qiao, J., et al.: Intracellular temperature sensing by a ratiometric fluorescent polymer thermometer. J. Mat. Chem. B 2(43), 7544–7550 (2014)
Balcytis, A., Ryu, M., Juodkazis, S., Morikawa, J.: Micro-thermocouple on nano-membrane: Thermometer for nanoscale measurements. Sci. Rep. 8(1), 6324 (2018)
Khan, W.U., Qin, L., Alam, A., Zhou, P., Peng, Y., Wang, Y.: Fluorescent carbon dots an effective nano-thermometer in vitro applications. ACS Appl. Bio Mater. 4(7), 5786–5796 (2021)
Mrinalini, M., Prasanthkumar, S.: Recent advances on stimuli-responsive smart materials and their applications. ChemPlusChem 84(8), 1103–1121 (2019)
Thapa, K.B., et al.: Single-metallic thermoresponsive coordination network as a dual-parametric luminescent thermometer. ACS Appl. Mater. Interfaces. 13(30), 35905–35913 (2021)
Gong, P., et al.: In situ temperature-compensated DNA hybridization detection using a dual-channel optical fiber sensor. Anal. Chem. 93(30), 10561–10567 (2021)
López-García, P., Forterre, P.: DNA topology in hyperthermophilic archaea: Reference states and their variation with growth phase, growth temperature, and temperature stresses. Mol. Microbiol. 23(6), 1267–1279 (1997)
Lee, M.H., Lin, H.Y., Yang, C.N.: A DNA-based two-way thermometer to report high and low temperatures. Anal. Chim. Acta 1081, 176–183 (2019)
Bu, C., Mu, L., Cao, X., Chen, M., She, G., Shi, W.: DNA nanostructure-based fluorescence thermometer with silver nanoclusters. Nanotechnology 29(29), 295501 (2018)
Liu, X., et al.: Photothermal detection of microrna using a horseradish peroxidase-encapsulated DNA hydrogel with a portable thermometer. Front. Bioeng. Biotechnol. 9, 799370 (2021)
Liu, T., Yu, T., Zhang, S., Wang, Y., Zhang, W.: Thermodynamic and kinetic properties of a single base pair in a-DNA and b-DNA. Phys. Rev. E 103(4–1), 042409 (2021)
Chao, J., Liu, H., Su, S., Wang, L., Huang, W., Fan, C.: Structural DNA nanotechnology for intelligent drug delivery. Small 10(22), 4626–4635 (2014)
Tashiro, R., Sugiyama, H.: The molecular-thermometer based on b-z transition of DNA. Nucleic Acids 48(1), 89–90 (2004)
Bu, C., Mu, L., Cao, X., Chen, M., She, G., Shi, W.: Silver nanowire-based fluorescence thermometer for a single cell. ACS Appl. Mater. Interfaces. 10(39), 33416–33422 (2018)
Drake, T.J., Tan, W.: Molecular beacon DNA probes and their bioanalytical applications. Appl. Spectrosc. 58(9), 269A-280A (2004)
Miller, I.C., Gamboa Castro, M., Maenza, J., Weis, J.P., Kwong, G.A.: Remote control of mammalian cells with heat-triggered gene switches and photothermal pulse trains. ACS Synth. Biol. 7(4), 1167–1173 (2018)
Yakovchuk, P., Protozanova, E., Frank-Kamenetskii, M.D.: Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34(2), 564–574 (2006)
Xie, N., et al.: Scallop-inspired DNA nanomachine: a ratiometric nanothermometer for intracellular temperature sensing. Anal. Chem. 89(22), 12115–12122 (2017)
Gareau, D., Desrosiers, A., Vallée-Bélisle, A.: Programmable quantitative DNA nanothermometers. Nano Lett. 16(7), 3976–3981 (2016)
Ricci, F., Vallée-Bélisle, A., Porchetta, A., Plaxco, K.W.: Rational design of allosteric inhibitors and activators using the population-shift model: In vitro validation and application to an artificial biosensor. J. Am. Chem. Soc. 134(37), 15177–15180 (2012)
Hahn, J., Shih, W.M.: Thermal cycling of DNA devices via associative strand displacement. Nucleic Acids Res. 47(20), 10968–10975 (2019)
Yamayoshi, A., et al.: Selective and robust stabilization of triplex DNA structures using cationic comb-type copolymers. J. Phys. Chem. B 121(16), 4015–4022 (2017)
Acknowledgment
This work was sponsored by the National Natural Science Foundation of China (62172171), Zhejiang Lab (2021RD0AB03), the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ056), and the Science and Technology Project of Hebei Education Department (ZD2022098).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, Z., Hu, Y., Xie, C., Chen, K., Pan, L. (2023). A Sensitive Nanothermometer Based on DNA Triplex Structure. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_52
Download citation
DOI: https://doi.org/10.1007/978-981-99-1549-1_52
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-1548-4
Online ISBN: 978-981-99-1549-1
eBook Packages: Computer ScienceComputer Science (R0)