Skip to main content

Reconfigurable Nanobook Structure Driven by Polymerase-Triggered DNA Strand Displacement

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1801))

Abstract

Due to its high degree of customization, DNA origami provides a versatile platform with which to engineer nanoscale structures and devices. Reconfigurable nanodevices driven by DNA strand displacement accomplish the task of transition between different conformations, endowing DNA origami with application values. Herein, we propose a strategy to regulate the conformation of DNA origami using the polymerase-triggered DNA strand displacement (PTSD) reaction. We design a book-shaped DNA origami structure consisting of four pages connected into a cuboid shape. The PTSD reactions initiated by different primer strands selectively remove the connecting strand, transforming the nano book into a two-page or a four-page conformation. We utilize three primer strands to remove thirty-five connecting strands and construct three conformations of the identical DNA origami, illustrating that the PTSD reaction is an effective tool for the reconfiguration of DNA origami. The statistical results of TEM images prove the effectiveness of the proposed method. Our work on the development of PTSD-driven reconfigurable nanostructure will offer a new way to create intelligent materials for advanced nanotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  2. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50(1), 264–267 (2011)

    Article  Google Scholar 

  3. Woo, S., Rothemund, P.W.K.: Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3(8), 620–627 (2011)

    Article  Google Scholar 

  4. Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., Yan, H.: DNA origami with complex curvatures in three-dimensional space. Science 332(6027), 342–346 (2011)

    Article  Google Scholar 

  5. Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)

    Article  Google Scholar 

  6. Ke, Y., et al.: Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131(43), 15903–15908 (2009)

    Article  Google Scholar 

  7. Kopperger, E., List, J., Madhira, S., Rothfischer, F., Lamb, D.C., Simmel, F.C.: A self-assembled nanoscale robotic arm controlled by electric fields. Science 359(6373), 296–301 (2018)

    Article  Google Scholar 

  8. Li, S., et al.: A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36(3), 258–264 (2018)

    Article  Google Scholar 

  9. Ke, Y., Meyer, T., Shih, W.M., Bellot, G.: Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator. Nat. Commun. 7(1), 10935 (2016)

    Article  Google Scholar 

  10. Kuzyk, A., Yang, Y., Duan, X., Stoll, S., Govorov, A.O., Sugiyama, H., Endo, M., Liu, N.: A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7(1), 10591 (2016)

    Article  Google Scholar 

  11. Chen, K., Zhu, J., Bošković, F., Keyser, U.F.: Nanopore-based DNA hard drives for rewritable and secure data storage. Nano Lett. 20(5), 3754–3760 (2020)

    Article  Google Scholar 

  12. Song, J., Li, Z., Wang, P., Meyer, T., Mao, C., Ke, Y.: Reconfiguration of DNA molecular arrays driven by information relay. Science 357(6349), eaan3377 (2017)

    Article  Google Scholar 

  13. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.C.: A proximity-based programmable DNA nanoscale assembly line. Nature 465(7295), 202–205 (2010)

    Article  Google Scholar 

  14. Kuzuya, A., Sakai, Y., Yamazaki, T., Xu, Y., Komiyama, M.: Nanomechanical DNA origami “single-molecule beacons’’ directly imaged by atomic force microscopy. Nature Commun. 2(1), 449 (2011)

    Article  Google Scholar 

  15. Gerling, T., Wagenbauer, K.F., Neuner, A.M., Dietz, H.: Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347(6229), 1446–1452 (2015)

    Article  Google Scholar 

  16. Ryssy, J., et al.: Light-responsive dynamic DNA-origami-based plasmonic assemblies. Angew. Chem. Int. Ed. 60(11), 5859–5863 (2021)

    Article  Google Scholar 

  17. Chen, Z., Chen, K., Xie, C., Liao, K., Xu, F., Pan, L.: Cyclic transitions of DNA origami dimers driven by thermal cycling. Nanotechnology 34(6), 065601 (2023)

    Article  Google Scholar 

  18. Ijäs, H., Hakaste, I., Shen, B., Kostiainen, M.A., Linko, V.: Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano 13(5), 5959–5967 (2019)

    Article  Google Scholar 

  19. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)

    Article  Google Scholar 

  20. Han, D., Pal, S., Liu, Y., Yan, H.: Folding and cutting DNA into reconfigurable topological nanostructures. Nat. Nanotechnol. 5(10), 712–717 (2010)

    Article  Google Scholar 

  21. Chen, K., Xu, F., Hu, Y., Yan, H., Pan, L.: DNA kirigami driven by polymerase-triggered strand displacement. Small 18(24), 2201478 (2022)

    Article  Google Scholar 

  22. Liao, K., Chen, K., Xie, C., Chen, Z., Pan, L.: Disassembly of DNA origami dimers controlled by programmable polymerase primers. Chem. Commun. 58(92), 12879–12882 (2022)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (62172171), Zhejiang Lab (2021RD0AB03), and Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linqiang Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, K., Chen, Z., Xie, C., Pan, L. (2023). Reconfigurable Nanobook Structure Driven by Polymerase-Triggered DNA Strand Displacement. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1549-1_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1548-4

  • Online ISBN: 978-981-99-1549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics