Skip to main content

A Multi-label Feature Selection Method Based on Feature Graph with Ridge Regression and Eigenvector Centrality

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1791))

Included in the following conference series:

  • 768 Accesses

Abstract

In multi-label learning, instances with multiple semantic labels suffer from the impact of high feature dimensionality. The goal of multi-label feature selection is to process multi-dimensional and multi-label data and keep relevant information in the original data. However, varieties of existing feature ranking-based multi-label feature selection methods do not take into account the relationship between features. Methods based on feature graph can present and utilize the association between features but still have imperfections. Among them, the exploration of the correlation between features and labels is not sufficient, and there is no efficient use of the association between features to evaluate features. In this paper, a multi-label feature selection method based on feature graph with ridge regression and eigenvector centrality is proposed. Ridge regression is used to learn a valid representation of feature label correlation. The learned correlation representation is mapped to a graph to efficiently display and use feature relationships. Eigenvector centrality is used to evaluate nodes in the graph to obtain scores for features. The effectiveness of the proposed method is testified according to three evaluation metrics (Ranking loss, Average precision, and Micro-F1) on four datasets by comparison with seven state-of-the-art multi-label feature selection methods.

This work is supported by the National Natural Science Foundation of China under grant NO. 61502155, National Natural Science Foundation of China under grant NO. 61772180 and Fujian Provincial Key Laboratory of Data Intensive Computing and Key Laboratory of Intelligent Computing and Information Processing, Fujian: BD201801.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://mulan.sourceforge.net/datasets-mlc.html.

References

  1. Chauhan, V., Tiwari, A., Joshi, N., Khandelwal, S.: Multi-label classifier for protein sequence using heuristic-based deep convolution neural network. Appl. Intell. 52(3), 2820–2837 (2022). https://doi.org/10.1007/s10489-021-02529-6

    Article  Google Scholar 

  2. Tirupattur, P., Duarte, K., Rawat, Y.S., Shah, M.: Modeling multi-label action dependencies for temporal action localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1460–1470 (2021)

    Google Scholar 

  3. Gao, B.B., Zhou, H.Y.: Learning to discover multi-class attentional regions for multi-label image recognition. IEEE Trans. Image Process. 30, 5920–5932 (2021)

    Article  Google Scholar 

  4. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)

    Article  Google Scholar 

  5. Kashef, S., Nezamabadipour, H., Nipour, B.: Multilabel feature selection: a comprehensive review and guide experiments. WIREs Data Min. Knowl. Discov. 8(2), e1240 (2018)

    Google Scholar 

  6. Hu, L., Gao, L., Li, Y., Zhang, P., Gao, W.: Feature-specific mutual information variation for multi-label feature selection. Inf. Sci. 593, 449–471 (2022)

    Article  Google Scholar 

  7. Paniri, M., Dowlatshahi, M.B., Nezamabadi-Pour, H.: MLACO: a multi-label feature selection algorithm based on ant colony optimization. Knowl.-Based Syst. 192, 105285 (2020)

    Article  Google Scholar 

  8. Hashemi, A., Dowlatshahi, M.B., Nezamabadi-Pour, H.: MGFS: a multi-label graph-based feature selection algorithm via PageRank centrality. Expert Syst. Appl. 142, 113024 (2020)

    Article  Google Scholar 

  9. Chen, W., Yan, J., Zhang, B., Chen, Z., Yang, Q.: Document transformation for multi-label feature selection text categorization. In: 7th IEEE International Conference on Data Mining (ICDM 2007), New York, pp. 451–456. IEEE Press (2007)

    Google Scholar 

  10. Read, J.: A pruned problem transformation method for multi-label classification. In: Proceedings of 2008 New Zealand Computer Science Research Student Conference (NZCSRS 2008), Christchurch, pp. 143–150 (2008)

    Google Scholar 

  11. Doquire, G., Verleysen, M.: Feature selection for multi-label classification problems. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011. LNCS, vol. 6691, pp. 9–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21501-8_2

    Chapter  Google Scholar 

  12. Lee, J., Kim, D.W.: Fast multi-label feature selection based on information-theoretic feature ranking. Pattern Recogn. 48(9), 2761–2771 (2015)

    Article  MATH  Google Scholar 

  13. Zhang, P., Liu, G., Gao, W.: Distinguishing two types of labels for multi-label feature selection. Pattern Recogn. 95, 72–82 (2019)

    Article  Google Scholar 

  14. Hatami, M., Mahmood, S.R., Moradi, P.: A graph-based multi-label feature selection using ant colony optimization. In: 2020 10th International Symposium on Telecommunications (IST), Tehran, pp. 175–180. IEEE Press (2020)

    Google Scholar 

  15. Paniri, M., Dowlatshahi, M.B., Nezamabadi-pour, H.: Ant-TD: Ant colony optimization plus temporal difference reinforcement learning for multi-label feature selection. Swarm Evol. Comput. 64, 100892 (2021)

    Article  Google Scholar 

  16. McDonald, G.C.: Tracing ridge regression coefficients. WIREs Comput. Stat. 2(6), 695–703 (2010)

    Article  Google Scholar 

  17. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007)

    Article  Google Scholar 

  18. Roffo, G., Melzi, S.: Ranking to learn: feature ranking and selection via eigenvector centrality. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS (LNAI), vol. 10312, pp. 19–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61461-8_2

    Chapter  Google Scholar 

  19. Huang, R., Jiang, W., Sun, G.: Manifold-based constraint Laplacian score for multi-label feature selection. Pattern Recogn. Lett. 112, 346–352 (2018)

    Article  Google Scholar 

  20. Jian, L., Li, J., Shu, K., Liu, H.: Multi-label informed feature selection. In: 25th International Joint Conference on Artificial Intelligence (IJCAI), New York, pp. 1627–1633 (2016)

    Google Scholar 

  21. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Z., Zhang, H., Wang, M., He, Q. (2023). A Multi-label Feature Selection Method Based on Feature Graph with Ridge Regression and Eigenvector Centrality. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1639-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1638-2

  • Online ISBN: 978-981-99-1639-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics