Abstract
Periodic testing (PT) is part and parcel of instructional process, which targets at measuring student proficiency level on specific stage. In general, most previous PTs follow an inflexible offline-policy method, which can hardly adjust testing procedure using the online feedback instantly. In this paper, we develop a dynamic and executed online periodic testing framework called O\(^3\)GPT, which selects the most suitable questions step by step, depending on student’s previous timestep’s real-time feedback. To begin with, we employ a stacked GRU to update student’s state representation instantly, which could well capture the long-term dynamic nature from their past learning trajectories, leading to the testing agent perform effective periodic testing. Subsequently, in Stage2, O\(^3\)GPT incorporates a flexible testing-specific reward function into the soft actor-critic algorithm (SAC) to guarantee the rationality of all selected questions. Finally, to set up the online feedback, we test O\(^3\)GPT on an on-line simulated environment which can model qualitative development of knowledge proficiency. The results of our experiment conducted on two well-established student response datasets indicate that O\(^3\)GPT outperforms state-of-the-art baselines in PT task.
This work is supported by the Natural Science Foundation of Tianjin City (Grant No. 19JCYBJC15300), Tianjin Science and Technology planning project China (Grant No. 21ZYQCSY00050), Tianjin Higher Education Institute Undergraduate Teaching Quality and Teaching Reform Research Project (Grant No. B201005706), National Natural Science Foundation of China (Grant No. 61807024), and the Science and Technology Program of Tianjin (Grant No. 22YDTPJC00940).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huang, Y.M., Lin, Y.T., Cheng, S.C.: An adaptive testing system for supporting versatile educational assessment. Comput. Educ. 52(1), 53–67 (2009)
Li, G., Cai, Y., Gao, X., Wang, D., Tu, D.: Automated test assembly for multistage testing with cognitive diagnosis. Front. Psychol. 12, 509844 (2021). https://doi.org/10.3389/fpsyg.2021.509844
Zenisky, A., Hambleton, R.K., Luecht, R.M.: Multistage testing: issues, designs, and research. In: van der Linden, W., Glas, C. (eds.) Elements of Adaptive Testing. SSBS, pp. 355–372. Springer, New York (2009). https://doi.org/10.1007/978-0-387-85461-8_18
Xu, L., Wang, S., Cai, Y., Tu, D.: The automated test assembly and routing rule for multistage adaptive testing with multidimensional item response theory. J. Educ. Meas. 58(4), 538–563 (2021)
Li, Y., Li, Z., Feng, W., et al.: Accelerated online learning for collaborative filtering and recommender systems. In: ICDM, pp. 879–885 (2014). https://doi.org/10.1109/ICDMW.2014.95
Hoi, S.C., Sahoo, D., Lu, J., Zhao, P.: Online learning: a comprehensive survey. Neurocomputing 459, 249–289 (2021)
Wang, Q., Zeng, C., Zhou, W., et al.: Online interactive collaborative filtering using multi-armed bandit with dependent arms. TKDE 31(8), 1569–1580 (2019)
Wang, H., Wu, Q., Wang, H.: Learning hidden features for contextual bandits. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1633–1642. (2016). https://doi.org/10.1145/2983323.2983847
Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: WWW, pp. 661–670. (2010). https://doi.org/10.1145/1772690.1772758
Kawale, J., Bui, H.H., Kveton, B., Tran-Thanh, L., Chawla, S.: Efficient Thompson sampling for online matrix-factorization recommendation. In: NIPS, vol. 28, pp. 1297–1305 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: ICML, pp. 1861–1870 (2018). https://doi.org/10.48550/arXiv.1801.01290
Piech, C., Bassen, J., Huang, J., et al.: Deep knowledge tracing, pp. 505–514 (2015). https://doi.org/10.48550/arXiv.1506.05908
Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992). https://doi.org/10.1007/BF00992698
McInerney, J., Lacker, B., Hansen, S., et al.: Explore, exploit, and explain: personalizing explainable recommendations with bandits. In: RECSYS, pp. 31–39 (2018). https://doi.org/10.1145/3240323.3240354
Liu, Q., Shen, S., Huang, Z., Chen, E., Huang, Z.: A survey of knowledge tracing. https://doi.org/10.48550/arXiv.2105.15106
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ren, Y., Shang, Y., Liang, K., Zhang, X., Zhang, Y. (2023). O\(^3\)GPT: A Guidance-Oriented Periodic Testing Framework with Online Learning, Online Testing, and Online Feedback. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_11
Download citation
DOI: https://doi.org/10.1007/978-981-99-1639-9_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-1638-2
Online ISBN: 978-981-99-1639-9
eBook Packages: Computer ScienceComputer Science (R0)