Skip to main content

GCL-KGE: Graph Contrastive Learning for Knowledge Graph Embedding

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1791))

Included in the following conference series:

  • 853 Accesses

Abstract

Knowledge graph embedding models characterize entities and relations in structured knowledge graphs as vectors, which is essential for many downstream tasks. Some studies show that knowledge graph embedding models based on graph neural networks can exploit higher-order neighborhood information and generate meaningful representations. However, most models suffer from interference from distant neighborhood noise information. To address the challenge, we propose a graph contrastive learning knowledge graph embedding (GCL-KGE)model to enhance the representation of entities. Specifically, we use the graph attention network to aggregate multi-order neighbor information optimizing the pre-trained entity representation. To avoid the inclusion of redundant information in the graph attention network, we combine contrastive learning to provide auxiliary supervised signals. A new method of constructing positive instances in contrastive learning makes the entity representation in the hidden layer produce a marked effect in this paper. We use a triple scoring function to evaluate representation on link prediction. The experimental results on four datasets show that our model can alleviate the interactive noise and achieve better results than baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4710–4723 (2019)

    Google Scholar 

  2. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  3. Xu, W., Luo, Z., Liu, W., Bian, J., Yin, J., Liu, T.Y.: KGE-CL: contrastive learning of knowledge graph embeddings. arXiv e-prints, arXiv-2112 (2021)

    Google Scholar 

  4. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

  5. Dai Quoc Nguyen, T.D.N., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of NAACL-HLT, pp. 327–333 (2018)

    Google Scholar 

  6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  7. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Icml (2011)

    Google Scholar 

  8. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: ESWC (2018)

    Google Scholar 

  9. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 3060–3067 (2019)

    Google Scholar 

  10. Chen, M., Wei, F., Li, C., Cai, D.: Frame-wise action representations for long videos via sequence contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13801–13810 (2022)

    Google Scholar 

  11. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  12. Meng, Y., Xiong, C., Bajaj, P., Bennett, P., Han, J., Song, X.: Coco-LM: correcting and contrasting text sequences for language model pretraining. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  13. Wu, Z., Wang, S., Gu, J., Khabsa, M., Sun, F., Ma, H.: Clear: contrastive learning for sentence representation. arXiv preprint: arXiv:2012.15466 (2020)

  14. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  15. Toutanova, K.: Observed versus latent features for knowledge base and text inference. ACL-IJCNLP 2015, 57 (2015)

    Google Scholar 

  16. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  17. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 564–573 (2017)

    Google Scholar 

  18. Lin, X. V., Socher, R., Xiong, C.: Multi-hop knowledge graph reasoning with reward shaping. In: EMNLP (2018)

    Google Scholar 

  19. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: Twenty-fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  20. Yang, B., Yih, S. W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

  21. Chami, I., Wolf, A., Juan, D.C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyperbolic knowledge graph embeddings. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6901–6914 (2020)

    Google Scholar 

  22. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-ninth AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  23. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part in part Key R & D project of Shandong Province 2019JZZY010129, and in part by the Shandong Provincial Social Science Planning Project under Award 19BJCJ51, Award 18CXWJ01, and Award 18BJYJ04.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiyu Liu or Liancheng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Q., Duan, H., Dong, C., Liu, P., Xu, L. (2023). GCL-KGE: Graph Contrastive Learning for Knowledge Graph Embedding. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1639-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1638-2

  • Online ISBN: 978-981-99-1639-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics