Skip to main content

SumBART - An Improved BART Model for Abstractive Text Summarization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1791))

Included in the following conference series:

  • 819 Accesses

Abstract

In this project we introduce SumBART - an improved version of BART with better performance in abstractive text summarization task. BART is a denoising autoencoder model used for language modelling tasks. The existing BART model produces summaries with good grammatical accuracy but it does have certain amount of factual inconsistency. This issue of factual inconsistency is what makes text summarization models unfit to use in many real world applications. We are introducing 3 modifications on the existing model that improves rouge scores as well as factual consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banko, M., Mittal, V.O., Witbrock, M.J.: Headline generation based on statistical translation. In: Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (2000)

    Google Scholar 

  2. Zajic, D.M., Dorr, B.J., Lin, J.: Single-document and multi-document summarization techniques for email threads using sentence compression. Inf. Process. Manag. 44(4), 1600–1610 (2008)

    Article  Google Scholar 

  3. Vu, T.T., Tran, G.B., Pham, S.B.: Learning to simplify children stories with limited data. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8397, pp. 31–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05476-6_4

    Chapter  Google Scholar 

  4. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  5. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685 (2015)

  6. Parikh, A.P., et al.: A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933 (2016)

  7. Nallapati, R., et al.: Abstractive text summarization using sequence-to-sequence RNNs and beyond. arXiv preprint arXiv:1602.06023 (2016)

  8. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368 (2017)

  9. Paulus, R., Xiong, C., Socher, R.: A deep reinforced model for abstractive summarization. arXiv preprint arXiv:1705.04304 (2017)

  10. Zhang, Y., Chen, E., Xiao, W.: Extractive-abstractive summarization with pointer and coverage mechanism. In: Proceedings of 2018 International Conference on Big Data Technologies (2018)

    Google Scholar 

  11. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Narayan, S., Cohen, S.B., Lapata, M.: Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint arXiv:1808.08745 (2018)

  13. Devlin, J., et al.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  14. Zhang, J., et al.: Pegasus: pre-training with extracted gap-sentences for abstractive summarization. In: International Conference on Machine Learning, PMLR (2020)

    Google Scholar 

  15. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019)

  16. Radford, A., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  17. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  18. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  19. Lewis, M., et al.: Bart: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)

  20. Papineni, K., et al.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual meeting of the Association for Computational Linguistics (2002)

    Google Scholar 

  21. Lin, C.-Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out (2004)

    Google Scholar 

  22. Zhang, T., et al.: Bertscore: evaluating text generation with bert. arXiv preprint arXiv:1904.09675 (2019)

  23. Huang, Y., t al.: he factual inconsistency problem in abstractive text summarization: a survey. arXiv preprint arXiv:2104.14839 (2021)

  24. Zhou, C., et al.: Detecting hallucinated content in conditional neural sequence generation. arXiv preprint arXiv:2011.02593 (2020)

  25. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  26. Grootendorst, M.: Keybert: minimal keyword extraction with bert. https://maartengr.github.io/KeyBERT/index.html (2020)

  27. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vivek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vivek, A., Devi, V.S. (2023). SumBART - An Improved BART Model for Abstractive Text Summarization. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1639-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1638-2

  • Online ISBN: 978-981-99-1639-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics