Skip to main content

Learning TSP Combinatorial Search and Optimization with Heuristic Search

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1791))

Included in the following conference series:

  • 771 Accesses

Abstract

Traveling Salesman Problem (TSP) and similar combinatorial search and optimization problems have many real-world applications in logistics, transportation, manufacturing, IC design, and other industries. Large-scale TSP tasks have always been challenging to solve fast. During the training phase of the model, when the number of city nodes exceeds 200, the training process will be terminated due to insufficient memory. This paper achieves reducing memory usage by simplifying the network model. However, the prediction accuracy is lowered after the network model is simplified. In this paper, heuristic search methods such as greedy search, beam search and 2-opt search are used to improve the prediction accuracy. Our main contributions are: increase the number of city nodes that can be solved from 100 to 1000; compensate for the loss of accuracy with various search techniques; use various search techniques in combinatorial search and optimization domain. The novelty of our paper is: the model structure of the Transformer is simplified, and various heuristic search techniques are used to compensate for the accuracy of the solution. In the inference stage, although the search time required by greedy search, beam search, and 2-opt search is quite different, all of them can improve the model’s prediction accuracy to varying degrees. Extensive experiments demonstrate that using various heuristic search techniques can greatly improve the prediction accuracy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, S.: The approximability of NP-hard problems. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 337–348 (1998)

    Google Scholar 

  2. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

  4. Boese, K.D.: Cost versus distance in the traveling salesman problem. Citeseer (1995)

    Google Scholar 

  5. Bresson, X., Laurent, T.: The transformer network for the traveling salesman problem. arXiv preprint arXiv:2103.03012 (2021)

  6. Cook, W., Lovász, L., Seymour, P.D., et al.: Combinatorial optimization: papers from the DIMACS Special Year, vol. 20. American Mathematical Soc. (1995)

    Google Scholar 

  7. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_12

    Chapter  Google Scholar 

  8. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization with graph convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  9. Google, I.: Google optimization tools (or-tools) (2018). https://github.com/google/or-tools

  10. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations, vol. 12. Springer, New York (2006). https://doi.org/10.1007/b101971

    Book  MATH  Google Scholar 

  11. Helsgaun, K.: An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle routing problems. Technical report (2017)

    Google Scholar 

  12. Hochba, D.S.: Approximation algorithms for np-hard problems. ACM SIGACT News 28(2), 40–52 (1997)

    Article  Google Scholar 

  13. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

    Article  MATH  Google Scholar 

  14. Johnson, D.: Local search and the traveling salesman problem. In: Automata Languages and Programming. LNCS, pp. 443–460. Springer, Berlin (1990)

    Google Scholar 

  15. Joshi, C.K., Cappart, Q., Rousseau, L.M., Laurent, T., Bresson, X.: Learning TSP requires rethinking generalization. arXiv preprint arXiv:2006.07054 (2020)

  16. Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Handbooks in Operations Research and Management Science, vol. 7, pp. 225–330 (1995)

    Google Scholar 

  17. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–6358 (2017)

    Google Scholar 

  18. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In: International Conference on Learning Representations (2018)

    Google Scholar 

  19. Li, W., Ding, Y., Yang, Y., Sherratt, R.S., Park, J.H., Wang, J.: Parameterized algorithms of fundamental np-hard problems: a survey. HCIS 10(1), 1–24 (2020)

    Google Scholar 

  20. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, Q., Ge, S., He, D., Thaker, D., Drori, I.: Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936 (2019)

  22. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving the vehicle routing problem. In: Advances in Neural Information Processing Systems, pp. 9839–9849 (2018)

    Google Scholar 

  23. Gurobi Optimization: Gurobi optimizer reference manual (2018). http://www.gurobi.com

  24. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Courier Corporation (1998)

    Google Scholar 

  25. Peng, B., Wang, J., Zhang, Z.: A deep reinforcement learning algorithm using dynamic attention model for vehicle routing problems. In: Li, K., Li, W., Wang, H., Liu, Y. (eds.) ISICA 2019. CCIS, vol. 1205, pp. 636–650. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5577-0_51

    Chapter  Google Scholar 

  26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  27. Chvatal, V., Applegate, D.L., Bixby, R.E., Cook, W.J.: Concorde TSP solver (2006). www.math.uwaterloo.ca/tsp/concorde

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  29. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Comput. Sci. 28 (2015)

    Google Scholar 

  30. Welling, M., Kipf, T.N.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR 2017) (2016)

    Google Scholar 

  31. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    Article  MATH  Google Scholar 

  32. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36478-1_17

    Chapter  Google Scholar 

  33. Xing, Z., Tu, S., Xu, L.: Solve traveling salesman problem by Monte Carlo tree search and deep neural network. arXiv preprint arXiv:2005.06879 (2020)

  34. Yang, H.: Extended attention mechanism for tsp problem. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H., Gu, M. (2023). Learning TSP Combinatorial Search and Optimization with Heuristic Search. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1639-9_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1638-2

  • Online ISBN: 978-981-99-1639-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics