Skip to main content

Optimizing Knowledge Distillation via Shallow Texture Knowledge Transfer

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1791))

Included in the following conference series:

  • 771 Accesses

Abstract

Knowledge distillation (KD) is a widely used model compression technology to train a superior small network named student network. KD promotes a student network to mimic the knowledge from the middle or deep layers of a large network named teacher network. In general, existing knowledge distillation methods neglect to explore the shallow features of neural networks that contain informative texture knowledge. In this paper, we propose Shallow Texture Knowledge Distillation (SeKD) for distilling these informative shallow features. Moreover, we investigate the traditional machine learning method and adopt Gradient Local Binary Pattern (GLBP) for shallow features extraction. However, we have found that using GLBP to process shallow features will introduce an additional computational burden. To reduce computation, we design a texture attention module to optimize shallow feature extraction for distilling. We have conducted extensive experiments to evaluate the effectiveness of our proposed method. When training on the CIFAR-10 and CIFAR-100 datasets, the student network WideResNet16-2 trained by SeKD achieves 94.35% and 75.90% accuracies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  2. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  3. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3779–3787 (2019)

    Google Scholar 

  4. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, vol. 2, no. 7 (2015)

  5. Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. arXiv preprint arXiv:1707.01219 (2017)

  6. Jiang, N., Tang, J., Yu, W., Zhou, J., Mai, L.: Gradient local binary pattern layer to initialize the convolutional neural networks. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2021)

    Google Scholar 

  7. Jiang, N., Xu, J., Goto, S.: Pedestrian detection using gradient local binary patterns. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(8), 1280–1287 (2012)

    Article  Google Scholar 

  8. Jiang, N., Xu, J., Yu, W.: An intra-combined feature for pedestrian detection. IIEEJ Trans. Image Electron. Visual Comput. 1(1), 88–96 (2013)

    Google Scholar 

  9. Jiang, N., Xu, J., Yu, W., Goto, S.: Gradient local binary patterns for human detection. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 978–981. IEEE (2013)

    Google Scholar 

  10. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  12. Lee, S.H., Kim, D.H., Song, B.C.: Self-supervised knowledge distillation using singular value decomposition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 335–350 (2018)

    Google Scholar 

  13. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

  14. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  15. Passalis, N., Tefas, A.: Probabilistic knowledge transfer for deep representation learning. CoRR, abs/1803.10837, vol. 1, no. 2, p. 5 (2018)

    Google Scholar 

  16. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668 (2018)

  17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  18. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  19. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)

    Google Scholar 

  20. Tang, J., Jiang, N., Yu, W.: Gradient local binary pattern for convolutional neural networks. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 744–748. IEEE (2021)

    Google Scholar 

  21. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  23. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  24. Wang, T., Zhu, J.Y., Torralba, A., Efros, A.A.: Dataset distillation. arXiv preprint arXiv:1811.10959 (2018)

  25. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  26. Yang, J., Martinez, B., Bulat, A., Tzimiropoulos, G.: Knowledge distillation via adaptive instance normalization. arXiv preprint arXiv:2003.04289 (2020)

  27. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4133–4141 (2017)

    Google Scholar 

  28. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  29. Zhang, L., Chen, X., Tu, X., Wan, P., Xu, N., Ma, K.: Wavelet knowledge distillation: towards efficient image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12464–12474 (2022)

    Google Scholar 

Download references

Acknowledgement

This research is supported by Sichuan Science and Technology Program (No. 2022YFG0324), SWUST Doctoral Research Foundation under Grant 19zx7102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, X. et al. (2023). Optimizing Knowledge Distillation via Shallow Texture Knowledge Transfer. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1639-9_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1638-2

  • Online ISBN: 978-981-99-1639-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics