Skip to main content

Adversarial Training with Knowledge Distillation Considering Intermediate Representations in CNNs

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1791))

Included in the following conference series:

  • 753 Accesses

Abstract

A main challenge for training convolutional neural networks (CNNs) is improving the robustness against adversarial examples, which are images with added the artificial perturbations to induce misclassification in a CNNs. This challenge can be solved only by adversarial training, which uses adversarial examples rather than natural images for CNN training. Since its introduction, adversarial training has been continuously refined from various points of view. Some methods focus on constraining CNN outputs between adversarial examples and natural images, resembling knowledge distillation training. Knowledge distillation was originally intended to constrain the outputs of teacher–student CNNs to promote generalization of the student CNN. However, recent methods for knowledge distillation constrain intermediate representations rather than outputs to improve performance for natural images because it directly works well to preserve intraclass cohesiveness. To further investigate adversarial training using recent knowledge distillation methodology (i.e., constraining intermediate representations), we attempted to evaluate this method and compared it with conventional ones. We first visualized intermediate representations and experimentally found that cohesiveness is essential to properly classify not only natural images but also adversarial examples. Then, we devised knowledge distillation using intermediate representations for adversarial training and demonstrated its improved accuracy compared with output constraining for classifying both natural images and adversarial examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  2. Chen, T., Zhang, Z., Liu, S., Chang, S., Wang, Z.: Robust overfitting may be mitigated by properly learned smoothening. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  3. Cui, J., Liu, S., Wang, L., Jia, J.: Learnable boundary guided adversarial training. In: IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  4. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul of feature distillation. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Stat (2015)

    Google Scholar 

  9. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples are not bugs, they are features. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  10. Kannan, H., Kurakin, A., Goodfellow, I.: Adversarial logit pairing. arXiv preprint arXiv:1803.06373 (2018)

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS) (2012)

    Google Scholar 

  12. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (JMLR) (2008)

    Google Scholar 

  13. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  14. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  15. Stutz, D., Hein, M., Schiele, B.: Disentangling adversarial robustness and generalization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  16. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  17. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

Download references

Acknowledgement

This study was partly supported by MEXT KAKENHI, Grant-in-Aid for Scientific Research on Innovative Areas 19H04982 and Grant-in-Aid for Scientific Research (A) 18H04106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayaru Shouno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Higuchi, H., Suzuki, S., Shouno, H. (2023). Adversarial Training with Knowledge Distillation Considering Intermediate Representations in CNNs. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1639-9_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1638-2

  • Online ISBN: 978-981-99-1639-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics