Abstract
With the recent large astronomical survey experiments using high-resolution cameras and telescopes, there has been a tsunami of astronomical data that has been collected and is being utilized for important analysis. Based on pure photometric information, Redshift estimation is a crucial task of cosmology. The application of neural networks (NN) in this area is gaining popularity of late as NN performs well for large training samples. In this paper, we use Mean Absolute Error (MAE), as a metric, with a neural network to estimate the redshift of galaxies and quasars and show that MAE can be used as an alternate metric for this regression task. This paper uses Lipschitz constant based adaptive learning rate that involves hessian-free computation for faster training of the neural network. Results show that an adaptive learning rate based neural network with MAE converges much faster compared to a constant learning rate and reduces training time while providing MAE of 0.28 and Normalized Median Absolute Deviation (NMAD) is 0.03 for a data sample of 5 lakhs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amendola, L., et al.: Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relativ. 21, 1–345 (2018)
Abbott, T., et al.: The dark energy survey: more than dark energy-an overview. Mon. Not. Royal Astron. Soc. 460(2), 1270–1299 (2016)
de Jong, J.T.A., et al.: The kilo-degree survey. Exp. Astron. 35, 25–44 (2013). https://doi.org/10.1007/s10686-012-9306-1
Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)
Saha, S., Prashanth, T., Aralihalli, S., Basarkod, S., Sudarshan, T.S.B., Dhavala, S.S.: LALR: theoretical and experimental validation of Lipschitz adaptive learning rate in regression and neural networks. arXiv preprint arXiv:2006.13307 (2020)
Reza, M., Haque, M.A.: Photometric redshift estimation using ExtraTreesRegressor: galaxies and quasars from low to very high redshifts. Astrophys. Space Sci. 365(3), 1–9 (2020). https://doi.org/10.1007/s10509-020-03758-w
Dalarsson, M., Dalarsson, N.: Tensors, Relativity, and Cosmology. Academic Press, Cambridge (2015)
Sen, S., Agarwal, S., Chakraborty, P., Singh, K.P.: Astronomical big data processing using machine learning: a comprehensive review. Exp. Astron. 53(1), 1–43 (2022). https://doi.org/10.1007/s10686-021-09827-4
Sen, S., Saha, S., Chakraborty, P., Singh, K.P.: Implementation of neural network regression model for faster redshift analysis on cloud-based spark platform. In: Fujita, H., Selamat, A., Lin, J.C.-W., Ali, M. (eds.) IEA/AIE 2021. LNCS (LNAI), vol. 12799, pp. 591–602. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79463-7_50
Sandeep, V.Y., Sen, S., Santosh, K.: Analyzing and processing of astronomical images using deep learning techniques. In: IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (2021)
Monisha, et al.: An approach toward design and implementation of distributed framework for astronomical big data processing. In: Udgata, S.K., Sethi, S., Gao, X.Z. (eds.) Intelligent Systems. Lecture Notes in Networks and Systems, vol. 431, pp. 267–275. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0901-6_26
Mayank, K., Sen, S., Chakraborty, P.: Implementation of cascade learning using apache spark. In: 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). IEEE (2022)
Borne, K.D.: Astroinformatics: a 21st century approach to astronomy. arXiv preprint arXiv:0909.3892 (2009)
Connolly, A.J., et al.: Slicing through multicolor space: galaxy redshifts from broadband photometry. arXiv preprint astro-ph/9508100 (1995). connolly1995slicing
Viquar, M., et al.: Emerging technologies in data mining and information security, machine learning in astronomy: a case study in quasar-star classification. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds.) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol. 814, pp. 827–836. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1501-5_72
Sarkar, J., Bhatia, K., Saha, S., Safonova, M., Sarkar, S.: Mon. Not. Royal Astron. Soc. 510 (2022)
Wilson, D., et al.: Photometric redshift estimation with galaxy morphology using self-organizing maps. Astrophys. J. 888, 33 (2020)
Takase, T., et al.: Effective neural network training with adaptive learning rate based on training loss. Neural Netw. 101, 68–78 (2018)
Xu, Z., Dai, A.M., Kemp, J., Metz, L.: Learning an adaptive learning rate schedule. arXiv preprint arXiv:1909.09712 (2019)
Park, J., Yi, D., Ji, S.: A novel learning rate schedule in optimization for neural networks and it’s convergence. Symmetry 12, 660 (2020)
Mediratta, I., Saha, S., Mathur, S.: LipARELU: ARELU networks aided by Lipschitz acceleration. In: 2021 International Joint Conference on Neural Networks (IJCNN). IEEE (2021)
Reddi, S.J., Kale, S., Kumar, S.: arXiv preprint arXiv:1904.09237 (2019)
Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic bound of learning rate. arXiv preprint arXiv:1902.09843 (2019)
Zhou, Z., et al.: AdaShift: decorrelation and convergence of adaptive learning rate methods. arXiv preprint arXiv:1810.00143 (2018)
Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates. International Society for Optics and Photonics (2019)
Smith, L.N.: A disciplined approach to neural network hyper-parameters: part 1-learning rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820 (2018)
Liu, L., et al.: On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019)
Yedida, R., Saha, S., Prashanth, T.: LipschitzLR: using theoretically computed adaptive learning rates for fast convergence. arXiv preprint arXiv:1902.07399 (2019)
Willmott, C.J., et al.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005)
Taylor, M.H., et al.: On the sensitivity of field reconstruction and prediction using empirical orthogonal functions derived from gappy data. J. Clim. 26, 9194–9205 (2013)
Jerez, S., et al.: A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim. Dyn. 40, 3023–3046 (2013). https://doi.org/10.1007/s00382-012-1539-1
Ghosh, A., Kumar, H., Sastry, P.S.: Robust loss functions under label noise for deep neural networks. arXivpreprint arXiv:1712.09482 (2017)
Koenker, R., Hallock, K.F.: Quantile regression. J. Econ. Perspect. 15, 143–156 (2001)
Tagasovska, N., Lopez-Paz, D.: Single-model uncertainties for deep learning. In: Advances in Neural Information Processing Systems (2019)
Qi, J., et al.: On mean absolute error for deep neural network based vector-to-vector regression. IEEE Signal Process. Lett. 27, 1485–1489 (2020)
Pandey, A., Wang, D.: On adversarial training and loss functions for speech enhancement. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018)
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1
Sen, S., Singh, K.P., Chakraborty, P:. Dealing with imbalanced regression problem for large dataset using scalable Artificial Neural Network. New Astron. 99, 101959 (2023)
Sen, S., Chakraborty, P.: A Novel Classification-Based Approach for Quicker Prediction of Redshift Using Apache Spark. In: 2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), vol. 1. IEEE (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Sen, S., Saha, S., Chakraborty, P., Singh, K.P. (2023). A Fast and Robust Photometric Redshift Forecasting Method Using Lipschitz Adaptive Learning Rate. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_11
Download citation
DOI: https://doi.org/10.1007/978-981-99-1642-9_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-1641-2
Online ISBN: 978-981-99-1642-9
eBook Packages: Computer ScienceComputer Science (R0)