Skip to main content

Optimal Design of Cable-Driven Parallel Robots by Particle Schemes

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

Cable-driven manipulators are attractive for high payload ratio, low inertia, large workspace, and high-speed duties. The optimal attachment configuration of cable-driven robots is key to attain desirable levels of cost and performance. In this paper, we investigate the optimal configuration of a cable-driven parallel mechanism under topologically distinct tasks by using gradient-free heuristics with distinct modes of exploration and exploitation. Our computational experiments comprising the configuration of IPAnema2, a cable-driven parallel robot with eight cables and 6-DOFs, using five gradient-free particle-based optimization heuristics have shown (1) the multimodal properties of the search space, (2) niching and stagnation avoidance strategies in optimization offer competitive convergence to feasible solutions, and (3) using the cost function based on the sum of square of forces while solving the tension distribution problem leads to feasible yet not always smooth force distributions, implying the need to devise tailored objective functions considering smoothness factors in the quadratic program. Our results has the potential to explore the nature of the search space to build tailored and fast learning schemes for cable-driven mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albus, J., Bostelman, R., Dagalakis, N.: The nist robocrane (10, No. 5) (1992–09-08 00:09:00 1992)

    Google Scholar 

  2. Borgstrom, P.H., Jordan, B.L., Sukhatme, G.S., Batalin, M.A., Kaiser, W.J.: Rapid computation of optimally safe tension distributions for parallel cable-driven robots. IEEE Trans. Robot. 25(6), 1271–1281 (2009)

    Article  Google Scholar 

  3. Bruckmann, T., Mikelsons, L., Hiller, M.: A design-to-task approach for wire robots. In: Kecskeméthy, A., Potkonjak, V., Müller, A. (eds.) Interdisciplinary Applications of Kinematics, pp. 83–97. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-2978-0_6

  4. Bryson, J.T., Jin, X., Agrawal, S.K.: Optimal design of cable-driven manipulators using particle swarm optimization. J. Mech. Robot. 8(4), 041003 (2016)

    Google Scholar 

  5. Fahham, H.R., Farid, M.: Optimum design of planar redundant cable-suspended robots for minimum time trajectory tracking. In: ICCAS 2010, pp. 2156–2163 (2010)

    Google Scholar 

  6. Gagliardini, L., Caro, S., Gouttefarde, M., Wenger, P., Girin, A.: Optimal design of cable-driven parallel robots for large industrial structures. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5744–5749 (2014)

    Google Scholar 

  7. Guo, Y., Lau, D.: Heuristic-based design framework for the cable arrangement of cable-driven parallel robots. In: Gouttefarde, M., Bruckmann, T., Pott, A. (eds.) CableCon 2021. MMS, vol. 104, pp. 194–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75789-2_16

    Chapter  Google Scholar 

  8. Hassan, M., Khajepour, A.: Optimization of actuator forces in cable-based parallel manipulators using convex analysis. IEEE Trans. Robot. 24(3), 736–740 (2008)

    Article  Google Scholar 

  9. Hussein, H., Santos, J.C., Izard, J.B., Gouttefarde, M.: Smallest maximum cable tension determination for cable-driven parallel robots. IEEE Trans. Robot. 37(4), 1186–1205 (2021)

    Article  Google Scholar 

  10. Kawamura, S., Choe, W., Tanaka, S., Pandian, S.: Development of an ultrahigh speed robot falcon using wire drive system. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 215–220 (1995)

    Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  12. Kozuki, T., et al.: Design methodology for the thorax and shoulder of human mimetic musculoskeletal humanoid kenshiro -a thorax structure with rib like surface. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3687–3692 (2012)

    Google Scholar 

  13. Lamaury, J., Gouttefarde, M.: Control of a large redundantly actuated cable-suspended parallel robot. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4659–4664 (2013)

    Google Scholar 

  14. Lau, D., Bhalerao, K., Oetomo, D., Halgamuge, S.K.: On the task specific evaluation and optimisation of cable-driven manipulators. In: Dai, J., Zoppi, M., Kong, X. (eds.) Advances in Reconfigurable Mechanisms and Robots I, pp. 707–716. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4141-9_63

  15. Lau, D., Eden, J., Tan, Y., Oetomo, D.: CASPR: a comprehensive cable-robot analysis and simulation platform for the research of cable-driven parallel robots. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3004–3011 (2016)

    Google Scholar 

  16. Li, X.: Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_10

    Chapter  Google Scholar 

  17. Li, X.: A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 78–85. GECCO 2007, Association for Computing Machinery, New York, NY, USA (2007)

    Google Scholar 

  18. Lim, W.B., Yeo, S.H., Yang, G., Mustafa, S.K.: Kinematic analysis and design optimization of a cable-driven universal joint module. In: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1933–1938 (2009)

    Google Scholar 

  19. Lou, Y.N., Di, S.: Design of a cable-driven auto-charging robot for electric vehicles. IEEE Access 15640–15655 (2020)

    Google Scholar 

  20. Mao, Y., Agrawal, S.K.: Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans. Robot. 28(4), 922–931 (2012)

    Google Scholar 

  21. Merlet, J.P., Daney, D.: A portable, modular parallel wire crane for rescue operations. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2834–2839 (2010)

    Google Scholar 

  22. Parque, V.: A differential particle scheme with successful parent selection and its application to PID control tuning. In: IEEE Congress on Evolutionary Computation, CEC 2021, Kraków, Poland, pp. 522–529 (2021)

    Google Scholar 

  23. Pott, A., Mütherich, H., Kraus, W., Schmidt, V., Miermeister, P., Verl, A.: IPAnema: a family of cable-driven parallel robots for industrial applications. In: Bruckmann, T., Pott, A. (eds.) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol. 12, pp. 119–134. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31988-4_8

  24. Pu, H., et al.: Optimal design of 6-DOF parallel manipulator with workspace maximization using a constrained differential evolution. In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 31–36 (2021)

    Google Scholar 

  25. Toz, M., Kucuk, S.: Dexterous workspace optimization of an asymmetric six-degree of freedom stewart-gough platform type manipulator. Robot. Auton. Syst. 61(12), 1516–1528 (2013)

    Article  Google Scholar 

  26. Wang, W., Tang, X., Shao, Z.: Study on energy consumption and cable force optimization of cable-driven parallel mechanism in automated storage/retrieval system. In: 2015 Second International Conference on Soft Computing and Machine Intelligence (ISCMI), pp. 144–150 (2015)

    Google Scholar 

  27. Wang, Y., Yang, G., Yang, K., Zheng, T.: The kinematic analysis and stiffness optimization for an 8-DOF cable-driven manipulator. In: 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 682–687 (2017)

    Google Scholar 

  28. Xiong, H., Diao, X.: Geometric isotropy indices for workspace analysis of parallel manipulators. Mech. Mach. Theory 128, 648–662 (2018)

    Article  Google Scholar 

  29. Yang, K., et al.: Cable tension analysis oriented the enhanced stiffness of a 3-DOF joint module of a modular cable-driven human-like robotic arm. Appl. Sci. 10(24) (2020)

    Google Scholar 

  30. Yao, R., Tang, X., Wang, J., Huang, P.: Dimensional optimization design of the four-cable-driven parallel manipulator in fast. IEEE/ASME Trans. Mechatron. 15(6), 932–941 (2010)

    Google Scholar 

  31. Zhang, F., Shang, W., Zhang, B., Cong, S.: Design optimization of redundantly actuated cable-driven parallel robots for automated warehouse system. IEEE Access 56867–56879 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Parque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parque, V., Miyashita, T. (2023). Optimal Design of Cable-Driven Parallel Robots by Particle Schemes. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1642-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1641-2

  • Online ISBN: 978-981-99-1642-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics