Skip to main content

Interpretable Decision Tree Ensemble Learning with Abstract Argumentation for Binary Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1792))

Included in the following conference series:

  • 706 Accesses

Abstract

We marry two powerful ideas: decision tree ensemble for rule induction and abstract argumentation for aggregating inferences from diverse decision trees to produce better predictive performance and intrinsically interpretable than state-of-the-art ensemble models. Our approach called Arguing Tree Ensemble is a self-explainable model that first learns a group of decision trees from a given dataset. It then treats all decision trees as knowledgable agents and let them argue each other for concluding a prediction. Unlike conventional ensemble methods, this proposal offers full transparency to the prediction process. Therefore, AI users are able to interpret and diagnose the prediction’s output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, C., D’souza, D., Hooker, S.: Estimating example difficulty using variance of gradients. arXiv preprint arXiv:2008.11600 (2020)

  2. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  3. Brendel, W., Bethge, M.: Approximating cnns with bag-of-local-features models works surprisingly well on imagenet. arXiv preprint arXiv:1904.00760 (2019)

  4. Chen, C., Li, O., Tao, C., Barnett, A.J., Su, J., Rudin, C.: This looks like that: deep learning for interpretable image recognition. arXiv preprint arXiv:1806.10574 (2018)

  5. Cocarascu, O., Cyras, K., Toni, F.: Explanatory predictions with artificial neural networks and argumentation. In: Proceedings of the IJCAI/ECAI Workshop on Explainable Artificial Intelligence (XAI), pp. 26–32 (2018)

    Google Scholar 

  6. Cocarascu, O., Toni, F.: Argumentation for machine learning: a survey. In: COMMA, pp. 219–230 (2016)

    Google Scholar 

  7. Čyras, K., Rago, A., Albini, E., Baroni, P., Toni, F.: Argumentative XAI: a survey. arXiv preprint arXiv:2105.11266 (2021)

  8. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  9. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theory Pract. Logic Programm. 4(1+2), 95–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koh, P.W., et al.: Concept bottleneck models. In: ICML, pp. 5338–5348. PMLR (2020)

    Google Scholar 

  13. Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  14. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al., (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774 (2017)

    Google Scholar 

  15. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nauta, M., van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-grained image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14933–14943 (2021)

    Google Scholar 

  17. Palczewska, A., Palczewski, J., Robinson, R.M., Neagu, D.: Interpreting random forest models using a feature contribution method. In: 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), pp. 112–119. IEEE (2013)

    Google Scholar 

  18. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  19. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)

    Google Scholar 

  20. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  21. Yeh, C.K., Kim, J.S., Yen, I.E., Ravikumar, P.: Representer point selection for explaining deep neural networks. arXiv preprint arXiv:1811.09720 (2018)

  22. Zilke, J.R., Loza Mencía, E., Janssen, F.: DeepRED – rule extraction from deep neural networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teeradaj Racharak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Racharak, T. (2023). Interpretable Decision Tree Ensemble Learning with Abstract Argumentation for Binary Classification. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1642-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1641-2

  • Online ISBN: 978-981-99-1642-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics