Skip to main content

Adaptive Rounding Compensation for Post-training Quantization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1792))

Included in the following conference series:

  • 626 Accesses

Abstract

Network quantization can compress and accelerate deep neural networks by reducing the bit-width of network parameters so that the quantized networks can be deployed to resource-limited devices. Post-Training Quantization (PTQ) is a practical method of generating a hardware-friendly quantized network without re-training or fine-tuning. However, PTQ results in unacceptable accuracy degradation due to disturbance caused by clipping and discarding the rounded remains. To address this problem, we propose Adaptive Rounding Compensation Quantization (ARCQ) to reduce the quantization errors by utilizing the rounded remains and clipping threshold that can be computed in resource-limited devices. Moreover, to leverage accuracy and speed, we propose a dynamic compensation method to select critical layers to be compensated in terms of parameters and quantization errors. Extensive experiments verify that our method can achieve superior results on ImageNet for classification and MSCOCO for object detection. Codes are available at https://github.com/Iconip2022/ARCQ.

This work was supported by the Science and Technology Innovation 2030-“New Generation Artificial Intelligence” major project (2020AAA0108703).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, F., Uri, A., Mark, G.: Fighting quantization bias with bias. arXiv preprint arXiv:1906.03193 (2019)

  2. Banner, R., Nahshan, Y., Soudry, D.: Post training 4-bit quantization of convolutional networks for rapid-deployment. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 7948–7956 (2019)

    Google Scholar 

  3. Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: ZeroQ: a novel zero shot quantization framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13166–13175 (2020)

    Google Scholar 

  4. Contributors, M: OpenMMLab’s image classification toolbox and benchmark (2020). https://github.com/open-mmlab/mmclassification

  5. Dong, Z., Yao, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: HAWQ: hessian aware quantization of neural networks with mixed-precision. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 293–302 (2019)

    Google Scholar 

  6. Esser, S.K., McKinstry, J.L., Bablani, D., Appuswamy, R., Modha, D.S.: Learned step size quantization. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  7. Fang, J., Shafiee, A., Abdel-Aziz, H., Thorsley, D., Georgiadis, G., Hassoun, J.H.: Post-training piecewise linear quantization for deep neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 69–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_5

    Chapter  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  9. Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., Soudry, D.: Accurate post training quantization with small calibration sets. In: International Conference on Machine Learning (ICML), pp. 4466–4475 (2021)

    Google Scholar 

  10. Jain, S.R., Gural, A., Wu, M., Dick, C.: Trained quantization thresholds for accurate and efficient fixed-point inference of deep neural networks. In: Proceedings of Machine Learning and Systems (MLSys) (2020)

    Google Scholar 

  11. Kai, C., et al.: MMDetection: Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  12. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference: a whitepaper. arXiv preprint arXiv:1806.08342 (2018)

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1106–1114 (2012)

    Google Scholar 

  14. Li, Y., Ding, W., Liu, C., Zhang, B., Guo, G.: TRQ: ternary neural networks with residual quantization. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 8538–8546 (2021)

    Google Scholar 

  15. Li, Y., et al.: BRECQ: pushing the limit of post-training quantization by block reconstruction. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  16. Li, Y., et al.: MQBench: towards reproducible and deployable model quantization benchmark. arXiv preprint arXiv:2111.03759 (2021)

  17. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017)

    Google Scholar 

  18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Liu, X., Ye, M., Zhou, D., Liu, Q.: Post-training quantization with multiple points: mixed precision without mixed precision. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 8697–8705 (2021)

    Google Scholar 

  21. Nagel, M., Amjad, R.A., van Baalen, M., Louizos, C., Blankevoort, T.: Up or down? Adaptive rounding for post-training quantization. In: International Conference on Machine Learning (ICML), pp. 7197–7206 (2020)

    Google Scholar 

  22. Nagel, M., van Baalen, M., Blankevoort, T., Welling, M.: Data-free quantization through weight equalization and bias correction. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1325–1334 (2019)

    Google Scholar 

  23. Nahshan, Yury, et al.: Loss aware post-training quantization. Mach. Learn. 110(11), 3245–3262 (2021). https://doi.org/10.1007/s10994-021-06053-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Philipp, G., Mohammad, M., Ghiasi, S.: Hardware-oriented approximation of convolutional neural networks. arXiv preprint arXiv:1604.03168 (2016)

  25. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 91–99 (2015)

    Google Scholar 

  26. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520 (2018)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  28. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019)

    Google Scholar 

  29. Zhao, R., Hu, Y., Dotzel, J., Sa, C.D., Zhang, Z.: Improving neural network quantization without retraining using outlier channel splitting. In: International Conference on Machine Learning (ICML), pp. 7543–7552 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, J. et al. (2023). Adaptive Rounding Compensation for Post-training Quantization. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1642-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1641-2

  • Online ISBN: 978-981-99-1642-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics