Skip to main content

PPIR-Net: An Underwater Image Restoration Framework Using Physical Priors

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1793))

Included in the following conference series:

  • 825 Accesses

Abstract

In recent years, underwater image processing has been a hot topic in machine vision, especially for underwater robots. A key part of underwater image processing is underwater image restoration. However, underwater image restoration is an essential but challenging task in the field of image processing. In this article, we propose an underwater image restoration framework based on physical priors, called PPIR-Net. The PPIR-Net combines prior knowledge with deep learning to greatly improve the structural texture and color information of underwater images. The framework estimates underwater transmission maps and underwater scattering maps through the structure restoration network (SRN). Moreover, the color correction network (CCN) is used to achieve image color correction. Extensive experimental results show that our method exceeds state-of-the-art methods on underwater image evaluation metrics.

Supported by Sichuan Science and Technology Program (No. 2021YFG0201).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeh, C., et al.: Lightweight deep neural network for joint learning of underwater object detection and color conversion. IEEE Trans. NNLS, 1–15 (2021)

    Google Scholar 

  2. Wu, Y., Ta, X., Xiao, R., Wei, Y., An, D., et al.: Survey of underwater robot positioning navigation. Appl. OR 90, 101845 (2019)

    Google Scholar 

  3. Hu, X., Liu, Y., Zhao, Z., Liu, J., et al.: Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network. Comput. Electron. Agric. 185, 106135 (2021)

    Article  Google Scholar 

  4. Hummel, R.: Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network. GGIP 6(2), 184–195 (1977)

    Google Scholar 

  5. Pizer, S., Amburn, E., Austin, J., et al.: Adaptive histogram equalization and its variations. CVGIP 39(3), 355–368 (1987)

    Google Scholar 

  6. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Academic, 474–485 (1994)

    Google Scholar 

  7. Drews, P., Nascimento, E., Moraes, F., et al.: Transmission estimation in underwater single images. In: ICCV Workshops, pp. 825–830 (2013)

    Google Scholar 

  8. Galdran, A., Pardo, D., Picón, A., et al.: Automatic red-channel underwater image restoration. JVCIR 26, 132–145 (2015)

    Google Scholar 

  9. Li, J., Katherine, A., Ryan, M., et al.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. AL 3(1), 387–394 (2018)

    Google Scholar 

  10. Wang, Y., Zhang, J., Cao, Y., Wang, Z.: A deep CNN method for underwater image enhancement. In: ICIP, pp. 1382–1386 (2017)

    Google Scholar 

  11. Li, C., Guo, C., Ren, W., Cong, R., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. IP 29, 4376–4389 (2020)

    MATH  Google Scholar 

  12. Guo, Y., Li, H., Zhuang, P.: Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. OE 45(3), 862–870 (2020)

    Google Scholar 

  13. Li, C., Guo, J., Guo, C.: Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Sig. Process. Lett. 25(3), 323–327 (2018)

    Article  Google Scholar 

  14. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. PAMI 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  15. Islam, M., Luo, P., Sattar, J.: Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. cs. CV (2020). https://doi.org/10.48550/arXiv.2002.01155

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  18. Song, H., Wang, R.: Underwater image enhancement based on multi-scale fusion and global stretching of dual-model. MDPI 9(6), 595 (2021)

    Google Scholar 

  19. Cho, Y., Jeong, J., Kim, A.: Model-assisted multiband fusion for single image enhancement and applications to robot vision. IEEE Robot. AL 3(4), 2822–2829 (2018)

    Google Scholar 

  20. Cosmin, A., Codruta O., Tom, H., Philippe, B.: Enhancing underwater images and videos by fusion. In: CVPR, pp. 81–88 (2012)

    Google Scholar 

  21. Islam, M., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved visual perception. IEEE Robot. AL 5(2), 3227–3234 (2020)

    Article  Google Scholar 

  22. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: BMVC (2018). https://doi.org/10.48550/arXiv.1808.04560

  23. Xu, J., Chae, Y., et al.: Dense Bynet: residual dense network for image super resolution. In: ICIP, pp. 71–75 (2018)

    Google Scholar 

Download references

Acknowledgments

The presented work is supported by Sichuan Science and Technology Program (No. 2021YFG0201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhua Zhang or Xing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C. et al. (2023). PPIR-Net: An Underwater Image Restoration Framework Using Physical Priors. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1793. Springer, Singapore. https://doi.org/10.1007/978-981-99-1645-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1645-0_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1644-3

  • Online ISBN: 978-981-99-1645-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics