Skip to main content

Denoising fMRI Message on Population Graph for Multi-site Disease Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1793))

Included in the following conference series:

  • 854 Accesses

Abstract

In general, large-scale fMRI analysis helps to uncover functional biomarkers and diagnose neuropsychiatric disorders. However, the existence of multi-site problem caused by inter-site variation hinders the full exploitation of fMRI data from multiple sites. To address the heterogeneity across sites, we propose a novel end-to-end framework for multi-site disease prediction, which aims to build a robust population graph and denoise the message passing on it. Specifically, we decompose the fMRI feature into site-invariant and site-specific embeddings through representation disentanglement, and construct the edge of population graph through the site-specific embedding and represent each subject using its site-invariant embedding, followed by the feature propagation and transformation over the constructed population graph via graph convolutional networks. Compared to the state-of-the-art methods, we have demonstrated its superior performance of our framework on the challenging ABIDE dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Caltech, CMU, KKI, MAX_MUN, NYU, Olin, OHSU, SDSU, SBL, Stanford, Trinity, UCLA\(_{1}\), UCLA\(_{2}\), Leuven\(_{1}\), Leuven\(_{2}\), UM\(_{1}\), UM\(_{2}\), Pittsburgh, USM and Yale.

  2. 2.

    https://github.com/missmissfreya/DPGC.

References

  1. Abraham, A., Milham, M.P., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 147, 736–745 (2017)

    Google Scholar 

  2. Craddock, C., Sikka, S., Cheung, B., Khanuja, R., Ghosh, S.S., et al.: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). Front. Neuroinform. 42, 10–3389 (2013)

    Google Scholar 

  3. Dadi, K., et al.: Benchmarking functional connectome-based predictive models for resting-state FMRI. Neuroimage 192, 115–134 (2019)

    Article  Google Scholar 

  4. Di Martino, A., Yan, C.G., Li, Q., Denio, E., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Google Scholar 

  5. Fortin, J.P., Cullen, N., Sheline, Y.I., et al.: Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167, 104–120 (2018)

    Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  7. Glocker, et al.: Machine learning with multi-site imaging data: an empirical study on the impact of scanner effects. arXiv preprint arXiv:1910.04597 (2019)

  8. Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A., Meneguzzi, F.: Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clin. 17, 16–23 (2018)

    Google Scholar 

  9. Huang, Y., Chung, A.C.S.: Edge-variational graph convolutional networks for uncertainty-aware disease prediction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 562–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_55

    Chapter  Google Scholar 

  10. Kazi, A., et al.: InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 73–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_6

    Chapter  Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Lee, J., Kang, E., Jeon, E., Suk, H.-I.: Meta-modulation network for domain generalization in multi-site fMRI classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 500–509. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_48

    Chapter  Google Scholar 

  13. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  14. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  15. Ranzato, M., Huang, F.J., Boureau, Y.L., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  16. Thompson, P.M., et al.: The enigma consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8(2), 153–182 (2014)

    Article  Google Scholar 

  17. Wang, G., Han, H., Shan, S., Chen, X.: Cross-domain face presentation attack detection via multi-domain disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6678–6687 (2020)

    Google Scholar 

  18. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.I., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)

    Google Scholar 

Download references

Acknowledgements

This research is funded by the Basic Research Project of Shanghai Science and Technology Commission (No.19JC1410101). The computation is supported by ECNU Multifunctional Platform for Innovation (001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y., Yang, J., Hu, W. (2023). Denoising fMRI Message on Population Graph for Multi-site Disease Prediction. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1793. Springer, Singapore. https://doi.org/10.1007/978-981-99-1645-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1645-0_55

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1644-3

  • Online ISBN: 978-981-99-1645-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics