Skip to main content

An Interpretable Multi-target Regression Method for Hierarchical Load Forecasting

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

Accurate energy load forecasting provides good decision support for energy management. Current energy load forecasts focus more on forecast accuracy without exploring the similar patterns and correlations of energy load demand between regions. Our proposed interpretable hybrid multi-target regression approach provides more explanatory abilities for each region’s energy load prediction. After combining the correlation between forecast targets and hierarchical forecast information, our model achieves a high forecast accuracy in that the mean square error is reduced by three quarters compared to LightGBM’s independent prediction for each region on the GEFCom 2017 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A partial dependence plot shows the marginal effect of one or two features on the predicted outcome of a machine learning model.

References

  1. Dimoulkas, I., Mazidi, P., Herre, L.: Neural networks for GEFCom2017 probabilistic load forecasting. Int. J. Forecast. 35, 1409–1423 (2019). https://doi.org/10.1016/j.ijforecast.2018.09.007

    Article  Google Scholar 

  2. Haben, S., Giasemidis, G., Ziel, F., Arora, S.: Short term load forecasting and the effect of temperature at the low voltage level. Int. J. Forecast. 35, 1469–1484 (2019). https://doi.org/10.1016/j.ijforecast.2018.10.007

    Article  Google Scholar 

  3. Hong, T., Xie, J., Black, J.: Global energy forecasting competition 2017: hierarchical probabilistic load forecasting. Int. J. Forecast. 35, 1389–1399 (2019). https://doi.org/10.1016/j.ijforecast.2019.02.006

    Article  Google Scholar 

  4. Hong, T., Xie, J., Black, J.: Global energy forecasting competition 2017: hierarchical probabilistic load forecasting. Int. J. Forecast. 35(4), 1389–1399 (2019). https://doi.org/10.1016/j.ijforecast.2019.02.006

  5. Kanda, I., Veguillas, J.M.: Data preprocessing and quantile regression for probabilistic load forecasting in the GEFCom2017 final match. Int. J. Forecast. 35, 1460–1468 (2019). https://doi.org/10.1016/j.ijforecast.2019.02.005

    Article  Google Scholar 

  6. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  7. Khamparia, A., Gupta, D., Nguyen, N.G., Khanna, A., Pandey, B., Tiwari, P.: Sound classification using convolutional neural network and tensor deep stacking network. IEEE Access 7, 7717–7727 (2019). https://doi.org/10.1109/ACCESS.2018.2888882

    Article  Google Scholar 

  8. Landgraf, A.J.: An ensemble approach to GEFCom2017 probabilistic load forecasting. Int. J. Forecast. 35, 1432–1438 (2019). https://doi.org/10.1016/j.ijforecast.2019.02.003

    Article  Google Scholar 

  9. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  10. Melki, G., Cano, A., Kecman, V., Ventura, S.: Multi-target support vector regression via correlation regressor chains. Inf. Sci. 415–416(November), 53–69 (2017). https://doi.org/10.1016/j.ins.2017.06.017

    Article  MathSciNet  MATH  Google Scholar 

  11. Nowotarski, J., Liu, B., Weron, R., Hong, T.: Improving short term load forecast accuracy via combining sister forecasts. Energy 98, 40–49 (2016). https://doi.org/10.1016/j.energy.2015.12.142

    Article  Google Scholar 

  12. Roach, C.: Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting. Int. J. Forecast. 35, 1439–1450 (2019). https://doi.org/10.1016/j.ijforecast.2018.09.009

    Article  Google Scholar 

  13. Smyl, S., Hua, N.G.: Machine learning methods for GEFCom2017 probabilistic load forecasting. Int. J. Forecast. 35, 1424–1431 (2019). https://doi.org/10.1016/j.ijforecast.2019.02.002

    Article  Google Scholar 

  14. Sobhani, M., Hong, T., Martin, C.: Temperature anomaly detection for electric load forecasting. Int. J. Forecast. 36, 324–333 (2020). https://doi.org/10.1016/j.ijforecast.2019.04.022

    Article  Google Scholar 

  15. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55–98 (2016). https://doi.org/10.1007/s10994-016-5546-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, Z., Lian, G.: A novel dynamically adjusted regressor chain for taxi demand prediction. In: Proceedings of the International Joint Conference on Neural Networks (2020). https://doi.org/10.1109/IJCNN48605.2020.9207160

  17. Zhao, T., Wang, J., Zhang, Y.: Day-ahead hierarchical probabilistic load forecasting with linear quantile regression and empirical copulas. IEEE Access 7, 80969–80979 (2019). https://doi.org/10.1109/ACCESS.2019.2922744

    Article  Google Scholar 

  18. Ziel, F.: Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting. Int. J. Forecast. 35, 1400–1408 (2019). https://doi.org/10.1016/j.ijforecast.2018.07.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitsuchart Pasupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Loo, C.K., Pasupa, K., Xu, L. (2023). An Interpretable Multi-target Regression Method for Hierarchical Load Forecasting. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1794. Springer, Singapore. https://doi.org/10.1007/978-981-99-1648-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1648-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1647-4

  • Online ISBN: 978-981-99-1648-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics