Skip to main content

VAE-AD: Unsupervised Variational Autoencoder for Anomaly Detection in Hyperspectral Images

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1794))

Included in the following conference series:

  • 700 Accesses

Abstract

Anomaly detection in hyperspectral images is an important and challenging problem. Most available data sets are unlabeled, and very few are labelled. In this paper, we proposed a lightweight Variational Autoencoder anomaly detector (VAE-AD) for hyperspectral data. VAE is used to learn the background distribution of the image, and thereafter it is used to construct a background representation for each pixel. Further reconstruction error is calculated between the background reconstructed image and the original image used for anomaly detection. A GMM-based post-processing step is used to construct the final detection map. The comparative analysis with five real-world hyperspectral data sets shows that the proposed model achieves better or comparable results with few learning parameters of the model, and with less time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jean-Pierre Ardouin, Josee Levesque, and Terry A. Rea. A demonstration of hyperspectral image exploitation for military applications. In 2007 10th International Conference on Information Fusion, pages 1–8, 2007

    Google Scholar 

  2. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  3. Helge Bürsing and Wolfgang Gross. Hyperspectral imaging: future applications in security systems. Advanced Optical Technologies, 6(2), January 2017

    Google Scholar 

  4. Cao, V.L.: Miguel Nicolau, and James McDermott. A hybrid autoencoder and density estimation model for anomaly detection, In PPSN (2016)

    Google Scholar 

  5. Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau. Autoencoder-based network anomaly detection. In 2018 Wireless Telecommunications Symposium (WTS), pages 1–5, 2018

    Google Scholar 

  6. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines. IEEE Access 9, 120043–120065 (2021)

    Article  Google Scholar 

  7. Eismann, M.T., Stocker, A.D., Nasrabadi, N.M.: Automated hyperspectral cueing for civilian search and rescue. Proceedings of the IEEE 97(6), 1031–1055 (2009)

    Article  Google Scholar 

  8. Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), 611–631, June 2002

    Google Scholar 

  9. Alexander F.H. Goetz, Gregg Vane, Jerry E. Solomon, and Barrett N. Rock. Imaging spectrometry for earth remote sensing. Science, 228(4704), 1147–1153, 1985

    Google Scholar 

  10. Jia Guo, Guannan Liu, Yuan Zuo, and Junjie Wu. An anomaly detection framework based on autoencoder and nearest neighbor. In 15th International Conference on Service Systems and Service Management (ICSSSM), pages 1–6, 2018

    Google Scholar 

  11. Ienco, D., Pensa, R.G., Meo, R.: A semisupervised approach to the detection and characterization of outliers in categorical data. IEEE Transactions on Neural Networks and Learning Systems 28(5), 1017–1029 (2017)

    Article  Google Scholar 

  12. Jiang, T., Li, Y., Xie, W., Qian, D.: Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection. IEEE Transactions on Geoscience and Remote Sensing 58(7), 4666–4679 (2020)

    Article  Google Scholar 

  13. Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013

    Google Scholar 

  14. Heesung Kwon, Sandor Z. Der, and Nasser M. Nasrabadi. Dual-window-based anomaly detection for hyperspectral imagery. In SPIE Defense + Commercial Sensing, 2003

    Google Scholar 

  15. Heesung Kwon and N.M. Nasrabadi. Kernel rx-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 43(2), 388–397, 2005

    Google Scholar 

  16. Hugo Larochelle, Dumitru Erhan, Aaron C. Courville, James Bergstra, and Yoshua Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, pages 473–480, 2007

    Google Scholar 

  17. Adrien Legrand, Brad Niepceron, Alain Cournier, and Harold Trannois. Study of autoencoder neural networks for anomaly detection in connected buildings. In 2018 IEEE Global Conference on Internet of Things (GCIoT), pages 1–5, 2018

    Google Scholar 

  18. Li, W., Qian, D.: Collaborative representation for hyperspectral anomaly detection. IEEE Transactions on Geoscience and Remote Sensing 53(3), 1463–1474 (2015)

    Article  MathSciNet  Google Scholar 

  19. Manolakis, D., Siracusa, C., Shaw, G.: Hyperspectral subpixel target detection using the linear mixing model. IEEE Transactions on Geoscience and Remote Sensing 39(7), 1392–1409 (2001)

    Article  Google Scholar 

  20. Manolakis, D., Truslow, E., Pieper, M., Cooley, T., Brueggeman, M.: Detection algorithms in hyperspectral imaging systems: An overview of practical algorithms. IEEE Signal Processing Magazine 31(1), 24–33 (2014)

    Article  Google Scholar 

  21. Christopher, M.: Bishop. Springer, Pattern Recognition and Machine Learning (2006)

    Google Scholar 

  22. Soumya Ranjan Mishra, Tusar Kanti Mishra, Anirban Sarkar, and Goutam Sanyal. Detection of anomalies in human action using optical flow and gradient tensor. In Smart Intelligent Computing and Applications, pages 561–570. Springer, 2020

    Google Scholar 

  23. Sima Peyghambari and Yun Zhang. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. Journal of Applied Remote Sensing, 15(03), July 2021

    Google Scholar 

  24. Reed, I.S., Yu, X.: Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing 38(10), 1760–1770 (1990)

    Article  Google Scholar 

  25. Ronald A. Riley, Robin K. Newsom, and Aaron K. Andrews. Anomaly detection in noisy hyperspectral imagery. In Sylvia S. Shen and Paul E. Lewis, editors, Imaging Spectrometry X, volume 5546 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 159–170, October 2004

    Google Scholar 

  26. Shimoni, M., Haelterman, R., Perneel, C.: Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geoscience and Remote Sensing Magazine 7(2), 101–117 (2019)

    Article  Google Scholar 

  27. Tan, K., Hou, Z., Fuyu, W., Qian, D., Chen, Yu.: Anomaly detection for hyperspectral imagery based on the regularized subspace method and collaborative representation. Remote Sensing 11(11), 1318 (2019)

    Article  Google Scholar 

  28. Maximilian E. Tschuchnig and Michael Gadermayr. Anomaly detection in medical imaging - a mini review. 2021

    Google Scholar 

  29. Zhang, L., Zhang, L., Tao, D., Huang, X.: Sparse transfer manifold embedding for hyperspectral target detection. IEEE Transactions on Geoscience and Remote Sensing 52(2), 1030–1043 (2014)

    Article  Google Scholar 

  30. Zhao, C., Wang, Y., Qi, B., Wang, J.: Global and local real-time anomaly detectors for hyperspectral remote sensing imagery. Remote Sensing 7(4), 3966–3985 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajeet Kumar Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ojha, N., Sinha, I.K., Singh, K.P. (2023). VAE-AD: Unsupervised Variational Autoencoder for Anomaly Detection in Hyperspectral Images. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1794. Springer, Singapore. https://doi.org/10.1007/978-981-99-1648-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1648-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1647-4

  • Online ISBN: 978-981-99-1648-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics