Skip to main content

P-LSTM: A Novel LSTM Architecture forĀ Glucose Level Prediction Problem

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1794))

Included in the following conference series:

  • 606 Accesses

Abstract

We introduce a novel LSTM architecture, parameterized LSTM (p-LSTM) which utilizes parameterized Elliott (p-Elliott) activation at the gates. The advantages of parameterization is evident in better generalization ability of the network to predict blood glucose levels of patients from a real, vetted data set. The parameter of the Elliott activation is learned from the backpropagation steps of the LSTM which reaps the benefits of learning flexible patterns from data using all features and causal features, as the parameter values change in training phase of p-LSTM. The learning of the parameter is also facilitated by fixed point methods on p-Elliott. This leads to better fit and adds explainability in prediction (due to causal features) to the blood glucose fluctuation patterns over time. The coupling of LSTM architecture with p-Elliott leads to superior prediction of glucose levels. It also provides an excellent technique to fit highly nonlinear temporal data, in comparison to the performance of state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arpit, D., Kanuparthi, B., Kerg, G., Ke, N.R., Mitliagkas, I., Bengio, Y.: h-detach: Modifying the lstm gradient towards better optimization (2018). https://doi.org/10.48550/ARXIV.1810.03023, https://arxiv.org/abs/1810.03023

  2. Borle, N.C., Ryan, E.A., Greiner, R.: The challenge of predicting blood glucose concentration changes in patients with type i diabetes. Health Informatics J. 27(1), 1460458220977584 (2021) , https://doi.org/10.1177/1460458220977584, pMID: 33504254

  3. Du, M.: Improving lstm neural networks for better short-term wind power predictions. In: 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), pp. 105ā€“109 (2019). https://doi.org/10.1109/REPE48501.2019.9025143

  4. Farzad, A., Mashayekhi, H., Hassanpour, H.: A comparative performance analysis of different activation functions in LSTM networks for classification. Neural Comput. Appl. 31(7), 2507ā€“2521 (2017). https://doi.org/10.1007/s00521-017-3210-6

    ArticleĀ  Google ScholarĀ 

  5. Ganatra, V., Swain, A., Saha, S., Mathur, A.: p-LSTM (June 2022). https://github.com/Vaibhav-Ganatra/p-LSTM

  6. Gould, P.G., Koehler, A.B., Ord, J.K., Snyder, R.D., Hyndman, R.J., Vahid-Araghi, F.: Forecasting time series with multiple seasonal patterns. European J. Operational Res. 191(1), 207ā€“222 (2008). https://doi.org/10.1016/j.ejor.2007.08.024, https://www.sciencedirect.com/science/article/pii/S0377221707008740

  7. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424ā€“438 (1969). https://www.jstor.org/stable/1912791

  8. Hamdi, T., et al.: Artificial neural network for blood glucose level prediction. In: 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), pp. 91ā€“95 (2017). https://doi.org/10.1109/SM2C.2017.8071825

  9. Jensen, M.H., Christensen, T.F., Tarnow, L., Seto, E., Dencker Johansen, M., Hejlesen, O.K.: Real-time hypoglycemia detection from continuous glucose monitoring data of subjects with type 1 diabetes. Diabetes Technol. Therapeutics 15(7), 538ā€“543 (2013). https://doi.org/10.1089/dia.2013.0069, https://doi.org/10.1089/dia.2013.0069, pMID: 23631608

  10. Marling, C., Bunescu, R.: The ohiot1dm dataset for blood glucose level prediction: Update 2020. In: CEUR Workshop Proceedings, vol. 2675, pp. 71ā€“74 (09 2020)

    Google ScholarĀ 

  11. Marling, C., Wiley, M., Bunescu, R., Shubrook, J., Schwartz, F.: Emerging applications for intelligent diabetes management. AI Magazine 33(2), 67 (2012). https://doi.org/10.1609/aimag.v33i2.2410, https://ojs.aaai.org/index.php/aimagazine/article/view/2410

  12. Martinsson, J., Schliep, A., Eliasson, B., Mogren, O.: Blood glucose prediction with variance estimation using recurrent neural networks. J. Heal. Informatics Res. 4(1), 1ā€“18 (2020). https://doi.org/10.1007/s41666-019-00059-y, https://doi.org/10.1007/s41666-019-00059-y

  13. Mhaskar, H.N., Pereverzyev, S.V., van der Walt, M.D.: A deep learning approach to diabetic blood glucose prediction. Front. Appli. Mathem. Stat. 3 (2017). https://doi.org/10.3389/fams.2017.00014,https://www.frontiersin.org/article/10.3389/fams.2017.00014

  14. Pappada, S., et al.: Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol. Therapeutics 13, 135ā€“41 (2011). https://doi.org/10.1089/dia.2010.0104

    ArticleĀ  Google ScholarĀ 

  15. Rana, M., Uddin, M.M., Hoque, M.M.: Effects of activation functions and optimizers on stock price prediction using lstm recurrent networks. In: Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence, CSAI 2019, pp. 354ā€“358. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3374587.3374622,https://doi.org/10.1145/3374587.3374622

  16. Saha, S., Nagaraj, N., Mathur, A., Yedida, R., H R, S.: Evolution of novel activation functions in neural network training for astronomy data: habitability classification of exoplanets. Euro. Phys. J. Special Topics 229(16), 2629ā€“2738 (2020). https://doi.org/10.1140/epjst/e2020-000098-9

    ArticleĀ  Google ScholarĀ 

  17. Shahid, S., Hussain, S., Khan, W.A.: Predicting continuous blood glucose level using deep learning. In: Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion, UCC 2021, Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3492323.3495598,https://doi.org/10.1145/3492323.3495598

  18. Vicente, R., Wibral, M., Lindner, M., Pipa, G.: Transfer entropy-a model-free measure of effective connectivity for the neurosciences. J. Computat. Neurosci. 30, 45ā€“67 (2011). https://doi.org/10.1007/s10827-010-0262-3

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  19. Xu, H., et al.: Modified lstm with memory layer for power grid signal classification. In: 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3693ā€“3697 (2020). https://doi.org/10.1109/EI250167.2020.9347143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Mathur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swain, A., Ganatra, V., Saha, S., Mathur, A., Phadke, R. (2023). P-LSTM: A Novel LSTM Architecture forĀ Glucose Level Prediction Problem. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1794. Springer, Singapore. https://doi.org/10.1007/978-981-99-1648-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1648-1_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1647-4

  • Online ISBN: 978-981-99-1648-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics