Skip to main content

A Deep Concatenated Convolutional Neural Network-Based Method to Classify Autism

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

Associating different brain regions relating to a particular neurological issue has emerged as an area of neuroimaging research. Deep learning algorithms have emerged as a promising approach to automate neural data processing for classifying traits or characteristics associated with a range of conditions. The present paper has worked on improving binary-classification accuracy of Autism Spectrum Disorder (ASD) by distinguishing ASD from Typically Developing (TD) individuals. A hybrid model is proposed concatenating VGGNet and ResNet-152 to fuse the most discerning heterogeneous features from both networks to build a strong feature vector for attaining high classification accuracy. The effectiveness of the proposed approach is demonstrated on ABIDE dataset, which showed an improvement over state-of-art classifiers in terms of accuracy (88.12%), sensitivity (91.32%), specificity (86.34%) and ROC (0.88), respectively, in classifying ASD and TD individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adiba, F.I., et al.: Effect of corpora on classification of fake news using Naive Bayes classifier. Int. J. Autom. Artif. Intell. Mach. Learn. 1(1), 80–92 (2020)

    Google Scholar 

  2. Ahmed, S., Hossain, M., Nur, S.B., Shamim Kaiser, M., Mahmud, M., et al.: Toward machine learning-based psychological assessment of autism spectrum disorders in school and community. In: Proceedings TEHI, pp. 139–149 (2022)

    Google Scholar 

  3. Ahmed, S., Hossain, M.F., Kaiser, M.S., Noor, M.B.T., Mahmud, M., Chakraborty, C.: Artificial intelligence and machine learning for ensuring security in smart cities. In: Chakraborty, C., Lin, J.C.-W., Alazab, M. (eds.) Data-Driven Mining, Learning and Analytics for Secured Smart Cities. ASTSA, pp. 23–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72139-8_2

    Chapter  Google Scholar 

  4. Niamat Ullah Akhund, T.M., Mahi, M.J.N., Hasnat Tanvir, A.N.M., Mahmud, M., Kaiser, M.S.: ADEPTNESS: Alzheimer’s disease patient management system using pervasive sensors - early prototype and preliminary results. In: Wang, S., et al. (eds.) BI 2018. LNCS (LNAI), vol. 11309, pp. 413–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05587-5_39

    Chapter  Google Scholar 

  5. Al Banna, M.H., Ghosh, T., Taher, K.A., Kaiser, M.S., Mahmud, M.: A monitoring system for patients of autism spectrum disorder using artificial intelligence. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 251–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_23

    Chapter  Google Scholar 

  6. AlArjani, A., et al.: Application of mathematical modeling in prediction of covid-19 transmission dynamics. Arab. J. Sci. Eng., 1–24 (2022)

    Google Scholar 

  7. Alsaade, F.W., Alzahrani, M.S.: Classification and detection of autism spectrum disorder based on deep learning algorithms. Comput. Intell. Neurosci. 2022 (2022)

    Google Scholar 

  8. Anderson, J.S., et al.: Functional connectivity magnetic resonance imaging classification of autism. Brain 134(12), 3742–3754 (2011)

    Article  Google Scholar 

  9. Bhapkar, H.R., Mahalle, P.N., Shinde, G.R., Mahmud, M.: Rough sets in COVID-19 to predict symptomatic cases. In: Santosh, K.C., Joshi, A. (eds.) COVID-19: Prediction, Decision-Making, and its Impacts. LNDECT, vol. 60, pp. 57–68. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9682-7_7

    Chapter  Google Scholar 

  10. Biswas, M., Kaiser, M.S., Mahmud, M., Al Mamun, S., Hossain, M.S., Rahman, M.A.: An XAI based autism detection: the context behind the detection. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 448–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_40

    Chapter  Google Scholar 

  11. Biswas, M., et al.: ACCU3RATE: a mobile health application rating scale based on user reviews. PloS One 16(12), e0258050 (2021)

    Article  Google Scholar 

  12. Biswas, M., et al.: Indoor navigation support system for patients with neurodegenerative diseases. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 411–422. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_37

    Chapter  Google Scholar 

  13. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  14. Du, Y., Fu, Z., Calhoun, V.D.: Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front. Neurosci. 12, 525 (2018)

    Article  Google Scholar 

  15. Eslami, T., Mirjalili, V., Fong, A., Laird, A.R., Saeed, F.: ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using FMRI data. Front. Neuroinformatic. 13, 70 (2019)

    Article  Google Scholar 

  16. Farhin, F., Kaiser, M.S., Mahmud, M.: Towards secured service provisioning for the internet of healthcare things. In: Proceedings AICT, pp. 1–6 (2020)

    Google Scholar 

  17. Farhin, F., Kaiser, M.S., Mahmud, M.: Secured smart healthcare system: blockchain and Bayesian inference based approach. In: Proceedings TCCE, pp. 455–465 (2021)

    Google Scholar 

  18. Ganesan, S., et al.: Prediction of autism spectrum disorder by facial recognition using machine learning. Webology 18, 406–417 (2021)

    Article  Google Scholar 

  19. Ghosh, T., et al.: Artificial intelligence and internet of things in screening and management of autism spectrum disorder. Sustain. Cities Soc. 74, 103189 (2021)

    Article  Google Scholar 

  20. Guo, X., et al.: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front. Neurosci. 11, 460 (2017)

    Article  Google Scholar 

  21. Heinsfeld, A.S., et al.: Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clin. 17, 16–23 (2018)

    Google Scholar 

  22. Huang, H., Liu, X., Jin, Y., Lee, S.W., Wee, C.Y., Shen, D.: Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum. Brain Mapp. 40(3), 833–854 (2019)

    Article  Google Scholar 

  23. Iidaka, T.: Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex 63, 55–67 (2015)

    Article  Google Scholar 

  24. Islam, N., et al.: Towards machine learning based intrusion detection in IoT networks. Comput. Mater. Contin 69(2), 1801–1821 (2021)

    Google Scholar 

  25. Jesmin, S., Kaiser, M.S., Mahmud, M.: Artificial and internet of healthcare things based Alzheimer care during COVID 19. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 263–274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_24

    Chapter  Google Scholar 

  26. Jiang, W., et al.: CNNG: a convolutional neural networks with gated recurrent units for autism spectrum disorder classification. Front. Aging Neurosci., 723 (2022)

    Google Scholar 

  27. Kaiser, M.S., et al.: 6G access network for intelligent internet of healthcare things: opportunity, challenges, and research directions. In: Proceedings TCCE, pp. 317–328 (2021)

    Google Scholar 

  28. Kumar, S., et al.: Forecasting major impacts of covid-19 pandemic on country-driven sectors: challenges, lessons, and future roadmap. Pers. Ubiquitous Comput., 1–24 (2021)

    Google Scholar 

  29. Li, X., et al.: Pooling regularized graph neural network for fMRI biomarker analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 625–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_61

    Chapter  Google Scholar 

  30. Lu, A., Perkowski, M.: Deep learning approach for screening autism spectrum disorder in children with facial images and analysis of ethnoracial factors in model development and application. Brain Sci. 11(11), 1446 (2021)

    Article  Google Scholar 

  31. Mahmud, M., Kaiser, M.S.: Machine learning in fighting pandemics: a COVID-19 case study. In: Santosh, K.C., Joshi, A. (eds.) COVID-19: Prediction, Decision-Making, and its Impacts. LNDECT, vol. 60, pp. 77–81. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9682-7_9

    Chapter  Google Scholar 

  32. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2021)

    Article  Google Scholar 

  33. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  34. Mahmud, M., et al.: Towards explainable and privacy-preserving artificial intelligence for personalisation in autism spectrum disorder. In: Proceedings HCII, pp. 356–370 (2022)

    Google Scholar 

  35. Moridian, P., et al.: Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: a review. CoRR 2206.11233, 1–51 (2022)

    Google Scholar 

  36. Nahiduzzaman, M., Tasnim, M., Newaz, N.T., Kaiser, M.S., Mahmud, M.: Machine learning based early fall detection for elderly people with neurological disorder using multimodal data fusion. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 204–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_19

    Chapter  Google Scholar 

  37. Nawar, A., et al.: Cross-content recommendation between movie and book using machine learning. In: Proceedings AICT, pp. 1–6 (2021)

    Google Scholar 

  38. Niu, K., et al.: Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data. Complexity 2020, 1357853 (2020)

    Article  Google Scholar 

  39. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mamun, S.A., Mahmud, M.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inform. 7(1), 1–21 (2020)

    Article  Google Scholar 

  40. Paul, A., et al.: Inverted bell-curve-based ensemble of deep learning models for detection of covid-19 from chest x-rays. Neural Comput. Appl., 1–15 (2022)

    Google Scholar 

  41. Prakash, N., et al.: Deep transfer learning for covid-19 detection and infection localization with superpixel based segmentation. Sustain. Cities Soc. 75, 103252 (2021)

    Article  Google Scholar 

  42. Rabby, G., Azad, S., Mahmud, M., Zamli, K.Z., Rahman, M.M.: TeKET: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. 12(4), 811–833 (2020)

    Article  Google Scholar 

  43. Rabby, G., et al.: A flexible keyphrase extraction technique for academic literature. Procedia Comput. Sci. 135, 553–563 (2018)

    Article  Google Scholar 

  44. Rad, N.M., Furlanello, C.: Applying deep learning to stereotypical motor movement detection in autism spectrum disorders. In: Proceedings ICDMW, pp. 1235–1242 (2016)

    Google Scholar 

  45. Rahman, M.A., Brown, D.J., Shopland, N., Burton, A., Mahmud, M.: Explainable multimodal machine learning for engagement analysis by continuous performance test. In: Proceedings HCII, pp. 386–399 (2022)

    Google Scholar 

  46. Rahman, M.A., et al.: Towards machine learning driven self-guided virtual reality exposure therapy based on arousal state detection from multimodal data. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds.) Proceedings Brain Informatics, pp. 195–209 (2022). https://doi.org/10.1007/978-3-031-15037-1_17

  47. Satu, M.S., et al.: Short-term prediction of covid-19 cases using machine learning models. Appl. Sci. 11(9), 4266 (2021)

    Article  Google Scholar 

  48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings ICLR, pp. 1–14 (2015)

    Google Scholar 

  49. Subah, F.Z., Deb, K., Dhar, P.K., Koshiba, T.: A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI. Appl. Sci. 11(8), 3636 (2021)

    Article  Google Scholar 

  50. Sumi, A.I., Zohora, M.F., Mahjabeen, M., Faria, T.J., Mahmud, M., Kaiser, M.S.: fASSERT: a fuzzy assistive system for children with autism using internet of things. In: Wang, S., et al. (eds.) BI 2018. LNCS (LNAI), vol. 11309, pp. 403–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05587-5_38

    Chapter  Google Scholar 

  51. Tamilarasi, F.C., Shanmugam, J.: Convolutional neural network based autism classification. In: Proceedings ICCES. pp. 1208–1212 (2020)

    Google Scholar 

  52. Tanu, T., Kakkar, D.: Strengthening risk prediction using statistical learning in children with autism spectrum disorder. Adv. Autism 4(3), 141–152 (2018)

    Article  Google Scholar 

  53. Wadhera, T., Kakkar, D.: Conditional entropy approach to analyze cognitive dynamics in autism spectrum disorder. Neurol. Res. 42(10), 869–878 (2020)

    Article  Google Scholar 

  54. Wadhera, T., Kakkar, D.: Multiplex temporal measures reflecting neural underpinnings of brain functional connectivity under cognitive load in autism spectrum disorder. Neurol. Res. 42(4), 327–337 (2020)

    Article  Google Scholar 

  55. Wadhera, T., Kakkar, D.: Modeling risk perception using independent and social learning: application to individuals with autism spectrum disorder. J. Math. Sociol. 45(4), 223–245 (2021)

    Article  MATH  Google Scholar 

  56. Wadhera, T., Kakkar, D.: Social cognition and functional brain network in autism spectrum disorder: insights from EEG graph-theoretic measures. Biomed. Signal Process. Control 67, 102556 (2021)

    Article  Google Scholar 

  57. Zaman, S., et al.: Security threats and artificial intelligence based countermeasures for internet of things networks: a comprehensive survey. IEEE Access 9, 94668–94690 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the AI-TOP (2020-1-UK01-KA201-079167) projects funded by the European Commission under the Erasmus+ programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mufti Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wadhera, T., Mahmud, M., Brown, D.J. (2023). A Deep Concatenated Convolutional Neural Network-Based Method to Classify Autism. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1794. Springer, Singapore. https://doi.org/10.1007/978-981-99-1648-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1648-1_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1647-4

  • Online ISBN: 978-981-99-1648-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics