Skip to main content

Reinforcement Technique for Classifying Quasi and Non-quasi Attributes for Privacy Preservation and Data Protection

  • Conference paper
  • First Online:
Applications and Techniques in Information Security (ATIS 2022)

Abstract

A quasi attribute refers to a distinct subset of unique attributes that can adequately recognize tuples in a table. Hasty distribution of the quasi attributes will prompt privacy leakage. Choosing private data from a list of attributes is decided by the publisher, and it undoubtedly changes from dataset to dataset. The need for dynamically choosing and informing systems about a quasi and a non-quasi attribute remains a challenging task. Presently, there is no particular automation model for the classification of quasi and non-quasi. It could be a burden when a massive dataset has to be classified, or aggregation of datasets has to be performed.

This research paper considers the need to categorize quasi attributes for a non-expert through a direct attack and proposes a solution through the game theory approach and reinforcement machine learning model. For demonstration, a \(2 \times 2\) state matrix is considered. The results include case-wise time consumption and comparison among all necessary steps for accurate navigation, between various attributes. Among all the notable cases, the matrix arrangement with a quasi attribute in \(00^{th}\) and \(11^{th}\)position, non-quasi in \(01^{th}\) and \(10^{th}\) position obtained better performance. This reinforcement-based solution helps the automation of the classification of quasi and non-quasi attributes.

Visvesvaraya Technological University, Belagavi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shi, P., Xiong, L., Fung, B.C.M.: Anonymizing data with quasi-sensitive attribute values. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM 2010), pp. 1389–1392. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1871437.1871628

  2. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  3. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011). https://doi.org/10.1145/1866739.1866758

    Article  Google Scholar 

  4. Yildiz, Y., Agogino, A., Brat, G.: Predicting pilot behavior in medium-scale scenarios using game theory and reinforcement learning. J. Guid. Control. Dyn. 37(4), 1335–1343 (2014)

    Article  Google Scholar 

  5. Nowé, A., Vrancx, P., De Hauwere, Y.M.: Game theory and multi-agent reinforcement learning. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning. ALO, vol. 12, pp. 441–470. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_14

    Chapter  MATH  Google Scholar 

  6. Bowling, M., Veloso, M.: An analysis of stochastic game theory for multiagent reinforcement learning. Carnegie-Mellon University Pittsburgh Pa School of Computer Science (2000)

    Google Scholar 

  7. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002). https://doi.org/10.1142/S0218488502001648

    Article  MathSciNet  MATH  Google Scholar 

  8. Von Neumann, J., Morgenstern, O.: 2nd rev. edn. Princeton University Press (1947)

    Google Scholar 

  9. Nash, J.F., Jr.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1), 48–49 (1950). https://doi.org/10.1073/pnas.36.1

    Article  MathSciNet  MATH  Google Scholar 

  10. Lindell, P.P., Mining, P.D.: J. Cryptol. 15, 177–206 (2002). https://doi.org/10.1007/s00145-001-0019-2

    Article  Google Scholar 

  11. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD 2005), pp. 593–599. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1081870.1081942

  12. Gambs, S., Kégl, B., Aïmeur, E.: Privacy-preserving boosting. Data Min. Knowl. Disc. 14, 131–170 (2007). https://doi.org/10.1007/s10618-006-0051-9

    Article  MathSciNet  Google Scholar 

  13. Qu, Y., Yu, S., Gao, L., Peng, S., Xiang, Y., Xiao, L.: FuzzyDP: fuzzy-based big data publishing against inquiry attacks. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 7–12 (2017). https://doi.org/10.1109/INFCOMW.2017.8116344

  14. Qu, Y., Yu, S., Zhou, W., Peng, S., Wang, G., Xiao, K.: Privacy of things: emerging challenges and opportunities in wireless internet of things. IEEE Wirel. Commun. 25(6), 91–97 (2018). https://doi.org/10.1109/MWC.2017.1800112

    Article  Google Scholar 

  15. Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: AAAI/IAAI, pp. 119–125 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelima Bayyapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yaji, S., Bayyapu, N. (2023). Reinforcement Technique for Classifying Quasi and Non-quasi Attributes for Privacy Preservation and Data Protection. In: Prabhu, S., Pokhrel, S.R., Li, G. (eds) Applications and Techniques in Information Security . ATIS 2022. Communications in Computer and Information Science, vol 1804. Springer, Singapore. https://doi.org/10.1007/978-981-99-2264-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2264-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2263-5

  • Online ISBN: 978-981-99-2264-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics