Abstract
Tampering attack is the act of deliberately modifying the codeword to produce another codeword of a related message. The main application is to find out the original message from the codeword. Non-malleable codes are introduced to protect the message from such attack. Any tampering attack performed on the message encoded by non-malleable codes, guarantee that output is either completely unrelated or original message. It is useful mainly in the situation when privacy and integrity of the message is important rather than correctness. Unfortunately, standard version of non-malleable codes are used for one-time tampering attack. In literature, we show that it is possible to construct non-malleable codes from authenticated encryptions. But, such construction does not provide security when an adversary tampers the codeword more than once. Later, continuously non-malleable codes are constructed where an attacker can tamper the message for polynomial number of times. In this work, we propose a construction of continuously non-malleable code from authenticated encryption in 2-split-state model. Our construction provides security against polynomial number of tampering attacks and non-malleability property is preserved. The security of proposed continuously non-malleable code reduces to the security of underlying leakage resilient storage when tampering experiment triggers self-destruct.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We refer only Encrypt then MAC scheme.
References
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691ā729 (1991)
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptol. 14(2), 101ā119 (2001)
De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566ā598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33
Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491ā506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31
Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C. (ed.) ICS 2010, Beijing, China, January 5ā7, pp. 434ā452. Tsinghua University Press (2010)
DavƬ, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121ā137. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_9
Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486ā503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_26
Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373ā390. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_21
Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517ā532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30
Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331ā348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_21
DamgĆ„rd, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 140ā160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_8
Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465ā488. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_20
Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC, pp. 774ā783 (2014)
Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: EUROCRYPT, pp. 111ā128 (2014)
Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451ā480. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_19
Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 459ā468. ACM (2015)
Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1317ā1328. ACM Press (2016)
Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393ā417. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_15
Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes stronger. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 319ā343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_10
Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 121ā139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_7
Fehr, S., Karpman, P., Mennink, B.: Short Non-Malleable Codes from Related-Key Secure Block Ciphers. IACR Trans. Symmetric Cryptol. 336ā352 (2018)
Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable codes in the split-state model from minimal assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 608ā639. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_21
Aggarwal, D., Dƶttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous non-malleable codes in the 8-split-state model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 531ā561. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_18
Dachman-Soled, D., Kulkarni, M.: Upper and lower bounds for continuous non-malleable codes. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 519ā548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_18
Chen, B., Chen, Y., HostĆ”kovĆ”, K., Mukherjee, P.: Continuous space-bounded non-malleable codes from stronger proofs-of-space. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 467ā495. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_17
Ghosal, A.K., Ghosh, S., Roychowdhury, D.: Practical non-malleable codes from symmetric-key primitives in 2-split-state model. In: Ge, C., Guo, F. (eds.) ProvSec 2022. LNCS, vol. 13600, pp. 273ā281. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20917-8_18
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ghosal, A.K., Roychowdhury, D. (2023). Continuously Non-malleable Codes from Authenticated Encryptions in 2-Split-State Model. In: Prabhu, S., Pokhrel, S.R., Li, G. (eds) Applications and Techniques in Information Security . ATIS 2022. Communications in Computer and Information Science, vol 1804. Springer, Singapore. https://doi.org/10.1007/978-981-99-2264-2_3
Download citation
DOI: https://doi.org/10.1007/978-981-99-2264-2_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-2263-5
Online ISBN: 978-981-99-2264-2
eBook Packages: Computer ScienceComputer Science (R0)