Skip to main content

Deep Learning Based Differential Classifier of PRIDE and RC5

  • Conference paper
  • First Online:
Applications and Techniques in Information Security (ATIS 2022)

Abstract

Deep learning-based cryptanalysis is one of the emerging trends in recent times. Differential cryptanalysis is one of the most potent approaches to classical cryptanalysis. Researchers are now modeling classical differential cryptanalysis by applying deep learning-based techniques. In this paper, we report deep learning-based differential distinguishers for block cipher PRIDE and RC5, utilizing deep learning models: CNN, LGBM and LSTM. We found distinguishers up to 23 rounds for PRIDE and nine rounds for RC5. To the best of our knowledge this is the first deep learning based differential classifier for cipher PRIDE and RC5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_4

    Chapter  Google Scholar 

  2. Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential distinguishers for lightweight ciphers. In: Design, Automation & Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France, 1–5 February 2021, pp. 176–181 (2021). https://doi.org/10.23919/DATE51398.2021.9474092

  3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small present - towards reaching the limit of lightweight encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

    Chapter  Google Scholar 

  4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015, pp. 175:1–175:6. ACM (2015). https://doi.org/10.1145/2744769.2747946

  5. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard (1993)

    Google Scholar 

  6. Biryukov, A., Kushilevitz, E.: Improved cryptanalysis of RC5. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 85–99. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054119

    Chapter  Google Scholar 

  7. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

    Chapter  Google Scholar 

  8. Gohr, A., Leander, G., Neumann, P.: An assessment of differential-neural distinguishers. Cryptology ePrint Archive, Paper 2022/1521 (2022). https://eprint.iacr.org/2022/1521

  9. Hou, Z., Ren, J., Chen, S.: Cryptanalysis of round-reduced simon32 based on deep learning. Cryptology ePrint Archive, Paper 2021/362 (2021). https://eprint.iacr.org/2021/362

  10. Kaliski, B.S., Yin, Y.L.: On differential and linear cryptanalysis of the RC5 encryption algorithm. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 171–184. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_14

    Chapter  Google Scholar 

  11. Knudsen, L.R., Meier, W.: Differential cryptanalysis of RC5. Eur. Trans. Telecommun. 8(5), 445–454 (1997)

    Article  Google Scholar 

  12. Pal, D., Mandal, U., Chaudhury, M., Das, A., Chowdhury, D.R.: A deep neural differential distinguisher for ARX based block cipher. IACR Cryptol. ePrint Arch., p. 1195 (2022). https://eprint.iacr.org/2022/1195

  13. Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_36

    Chapter  Google Scholar 

  14. Rivest, R.L.: The RC5 encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 86–96. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_7

    Chapter  MATH  Google Scholar 

  15. Yadav, T., Kumar, M.: Differential-ML distinguisher: machine learning based generic extension for differential cryptanalysis. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 191–212. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88238-9_10

    Chapter  Google Scholar 

  16. Yang, Q., et al.: Improved differential analysis of block cipher PRIDE. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 209–219. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17533-1_15

    Chapter  Google Scholar 

  17. Zhang, L., Wang, Z.: Improving differential-neural distinguisher model for des, chaskey, and PRESENT. CoRR abs/2204.06341 (2022). https://doi.org/10.48550/arXiv.2204.06341

  18. Zhao, J., Wang, X., Wang, M., Dong, X.: Differential analysis on block cipher PRIDE. IACR Cryptol. ePrint Arch., p. 525 (2014). https://eprint.iacr.org/2014/525

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debranjan Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, D., Mandal, U., Das, A., Chowdhury, D.R. (2023). Deep Learning Based Differential Classifier of PRIDE and RC5. In: Prabhu, S., Pokhrel, S.R., Li, G. (eds) Applications and Techniques in Information Security . ATIS 2022. Communications in Computer and Information Science, vol 1804. Springer, Singapore. https://doi.org/10.1007/978-981-99-2264-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2264-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2263-5

  • Online ISBN: 978-981-99-2264-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics