Abstract
Deep learning-based cryptanalysis is one of the emerging trends in recent times. Differential cryptanalysis is one of the most potent approaches to classical cryptanalysis. Researchers are now modeling classical differential cryptanalysis by applying deep learning-based techniques. In this paper, we report deep learning-based differential distinguishers for block cipher PRIDE and RC5, utilizing deep learning models: CNN, LGBM and LSTM. We found distinguishers up to 23 rounds for PRIDE and nine rounds for RC5. To the best of our knowledge this is the first deep learning based differential classifier for cipher PRIDE and RC5.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_4
Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential distinguishers for lightweight ciphers. In: Design, Automation & Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France, 1–5 February 2021, pp. 176–181 (2021). https://doi.org/10.23919/DATE51398.2021.9474092
Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small present - towards reaching the limit of lightweight encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015, pp. 175:1–175:6. ACM (2015). https://doi.org/10.1145/2744769.2747946
Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard (1993)
Biryukov, A., Kushilevitz, E.: Improved cryptanalysis of RC5. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 85–99. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054119
Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6
Gohr, A., Leander, G., Neumann, P.: An assessment of differential-neural distinguishers. Cryptology ePrint Archive, Paper 2022/1521 (2022). https://eprint.iacr.org/2022/1521
Hou, Z., Ren, J., Chen, S.: Cryptanalysis of round-reduced simon32 based on deep learning. Cryptology ePrint Archive, Paper 2021/362 (2021). https://eprint.iacr.org/2021/362
Kaliski, B.S., Yin, Y.L.: On differential and linear cryptanalysis of the RC5 encryption algorithm. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 171–184. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_14
Knudsen, L.R., Meier, W.: Differential cryptanalysis of RC5. Eur. Trans. Telecommun. 8(5), 445–454 (1997)
Pal, D., Mandal, U., Chaudhury, M., Das, A., Chowdhury, D.R.: A deep neural differential distinguisher for ARX based block cipher. IACR Cryptol. ePrint Arch., p. 1195 (2022). https://eprint.iacr.org/2022/1195
Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_36
Rivest, R.L.: The RC5 encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 86–96. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_7
Yadav, T., Kumar, M.: Differential-ML distinguisher: machine learning based generic extension for differential cryptanalysis. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 191–212. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88238-9_10
Yang, Q., et al.: Improved differential analysis of block cipher PRIDE. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 209–219. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17533-1_15
Zhang, L., Wang, Z.: Improving differential-neural distinguisher model for des, chaskey, and PRESENT. CoRR abs/2204.06341 (2022). https://doi.org/10.48550/arXiv.2204.06341
Zhao, J., Wang, X., Wang, M., Dong, X.: Differential analysis on block cipher PRIDE. IACR Cryptol. ePrint Arch., p. 525 (2014). https://eprint.iacr.org/2014/525
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Pal, D., Mandal, U., Das, A., Chowdhury, D.R. (2023). Deep Learning Based Differential Classifier of PRIDE and RC5. In: Prabhu, S., Pokhrel, S.R., Li, G. (eds) Applications and Techniques in Information Security . ATIS 2022. Communications in Computer and Information Science, vol 1804. Springer, Singapore. https://doi.org/10.1007/978-981-99-2264-2_4
Download citation
DOI: https://doi.org/10.1007/978-981-99-2264-2_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-2263-5
Online ISBN: 978-981-99-2264-2
eBook Packages: Computer ScienceComputer Science (R0)