Abstract
Federated Learning (FL), a novel distributed machine learning framework, made it possible to model collaboratively without risking participants’ privacy. All components of FL, including devices, networks, data, and models, are heterogeneous because of the dispersed feature. These heterogeneity issues impeded FL’s performance. HFL (Heterogeneous Federated Learning) offers a viable solution to these issues.
HFL has become an emerging research topic. We have conducted detailed research into the unique characteristics and challenges of HFL in the paper. And summaries methods of HFL at different levels. We reviewed the evaluation methods for HFL and provided an outlook on the future direction of HFL by analyzing the strengths and limits of the existing study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdellatif, A.A., et al.: Communication-efficient hierarchical federated learning for IoT heterogeneous systems with imbalanced data. Fut. Gener. Comput. Syst. 128, 406–419 (2022)
Abdelmoniem, A.M., Ho, C.Y., Papageorgiou, P., Canini, M.: Empirical analysis of federated learning in heterogeneous environments. In: Proceedings of the 2nd European Workshop on Machine Learning and Systems, pp. 1–9 (2022)
Anguita, D., Ghio, A., Oneto, L., Parra Perez, X., Reyes Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 437–442 (2013)
Baumgartner, J., Zannettou, S., Keegan, B., Squire, M., Blackburn, J.: The pushshift reddit dataset. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 14, pp. 830–839 (2020)
Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)
Cao, X., Li, Z., Yu, H., Sun, G.: COFED: cross-silo heterogeneous federated multi-task learning via co-training. arXiv preprint arXiv:2202.08603 (2022)
Chen, L.Y., Chiu, T.C., Pang, A.C., Cheng, L.C.: Fedequal: defending model poisoning attacks in heterogeneous federated learning. In: 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2021)
Cho, Y.J., Manoel, A., Joshi, G., Sim, R., Dimitriadis, D.: Heterogeneous ensemble knowledge transfer for training large models in federated learning. arXiv preprint arXiv:2204.12703 (2022)
Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: Emnist: extending mnist to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926 (2017). https://doi.org/10.1109/IJCNN.2017.7966217
Cui, Y., Cao, K., Zhou, J., Wei, T.: HELCFL: high-efficiency and low-cost federated learning in heterogeneous mobile-edge computing. In: 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1227–1232. IEEE (2022)
De Campos, T.E., Babu, B.R., Varma, M.: Character recognition in natural images. VISAPP 7(2), 2 (2009)
Duan, M., et al.: Fedgroup: efficient federated learning via decomposed similarity-based clustering. In: 2021 IEEE International Conference on Parallel & Distributed Processing with Applications, pp. 228–237. IEEE (2021)
Elkordy, A.R., Avestimehr, A.S.: Heterosag: secure aggregation with heterogeneous quantization in federated learning. IEEE Trans. Commun. 70(4), 2372–2386 (2022)
Gao, D., Liu, Y., Huang, A., Ju, C., Yu, H., Yang, Q.: Privacy-preserving heterogeneous federated transfer learning. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 2552–2559. IEEE (2019)
Gao, Z., Duan, Y., Yang, Y., Rui, L., Zhao, C.: Fedsec: a robust differential private federated learning framework in heterogeneous networks. In: 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1868–1873 (2022). https://doi.org/10.1109/WCNC51071.2022.9771929
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Processing 150 (2009)
Guo, K., Chen, Z., Yang, H.H., Quek, T.Q.: Dynamic scheduling for heterogeneous federated learning in private 5g edge networks. IEEE J. Sel. Topics Signal Process. 16, 26–40 (2021)
Guo, Y., Wang, Q., Ji, T., Wang, X., Li, P.: Resisting distributed backdoor attacks in federated learning: a dynamic norm clipping approach. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 1172–1182. IEEE (2021)
Hin, C.Y., Edith, N.: Fedhe: heterogeneous models and communication-efficient federated learning. arXiv preprint arXiv:2110.09910 (2021)
Hu, M., Wu, D., Zhou, Y., Chen, X., Chen, M.: Incentive-aware autonomous client participation in federated learning. IEEE Trans. Parallel Distrib. Syst. 33(10), 2612–2627 (2022)
Kachuee, M., Fazeli, S., Sarrafzadeh, M.: ECG heartbeat classification: a deep transferable representation. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 443–444. IEEE (2018)
Kanaparthy, S., Padala, M., Damle, S., Gujar, S.: Fair federated learning for heterogeneous face data. arXiv preprint arXiv:2109.02351 (2021)
Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)
Karkkainen, K., Joo, J.: Fairface: face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1548–1558 (2021)
Kinnunen, T., Kamarainen, J.K., Lensu, L., Lankinen, J., Käviäinen, H.: Making visual object categorization more challenging: randomized caltech-101 data set. In: 2010 20th International Conference on Pattern Recognition, pp. 476–479. IEEE (2010)
Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In: KDD, vol. 96, pp. 202–207 (1996)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. University of Toronto (2009)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Li, A., Set al.: Lotteryfl: personalized and communication-efficient federated learning with lottery ticket hypothesis on non-iid datasets. arXiv preprint arXiv:2008.03371 (2020)
Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., Chen, Y.: Fedmask: joint computation and communication-efficient personalized federated learning via heterogeneous masking. In: Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, pp. 42–55 (2021)
Li, D., Wang, J.: FEDMD: heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581 (2019)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)
Li, L., et al.: Fedsae: a novel self-adaptive federated learning framework in heterogeneous systems. In: 2021 International Joint Conference on Neural Networks (IJCNN) (2021)
Li, L., Shi, D., Hou, R., Li, H., Pan, M., Han, Z.: To talk or to work: flexible communication compression for energy efficient federated learning over heterogeneous mobile edge devices. In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–10. IEEE (2021)
Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Maga. 37(3), 50–60 (2020)
Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)
Li, X., Li, Y., Li, S., Zhou, Y., Chen, C., Zheng, Z.: A unified federated DNNs framework for heterogeneous mobile devices. IEEE Internet Things J. 9(3), 1737–1748 (2021)
Li, Y., Zhou, W., Wang, H., Mi, H., Hospedales, T.M.: Fedh2l: federated learning with model and statistical heterogeneity. arXiv preprint arXiv:2101.11296 (2021)
Liu, Y., Zhang, L., Ge, N., Li, G.: A systematic literature review on federated learning: from a model quality perspective. arXiv preprint arXiv:2012.01973 (2020)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)
Lu, X., Liao, Y., Liu, C., Lio, P., Hui, P.: Heterogeneous model fusion federated learning mechanism based on model mapping. IEEE Internet Things J. 9, 6058–6068 (2021)
Luo, J., Yang, J., Ye, X., Guo, X., Zhao, W.: Fedskel: efficient federated learning on heterogeneous systems with skeleton gradients update. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3283–3287 (2021)
Ma, C., et al.: On safeguarding privacy and security in the framework of federated learning. IEEE Netw. 34(4), 242–248 (2020)
Ma, Q., Xu, Y., Xu, H., Jiang, Z., Huang, L., Huang, H.: FEDSA: a semi-asynchronous federated learning mechanism in heterogeneous edge computing. IEEE J. Sel. Areas Commun. 39(12), 3654–3672 (2021)
Ma, X., Zhou, Y., Wang, L., Miao, M.: Privacy-preserving byzantine-robust federated learning. Comput. Stand. Interfaces 80, 103561 (2022)
McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 691–706 (2019). https://doi.org/10.1109/SP.2019.00029
Shakespeare, W.: The Complete Works of William Shakespeare. Race Point Publishing (2014)
Shamir, O., Srebro, N., Zhang, T.: Communication-efficient distributed optimization using an approximate newton-type method. In: International Conference on Machine Learning, pp. 1000–1008. PMLR (2014)
Shang, X., Lu, Y., Huang, G., Wang, H.: Federated learning on heterogeneous and long-tailed data via classifier re-training with federated features. arXiv preprint arXiv:2204.13399 (2022)
Shin, J., Li, Y., Liu, Y., Lee, S.J.: Sample selection with deadline control for efficient federated learning on heterogeneous clients. arXiv preprint arXiv:2201.01601 (2022)
Stevenson, N.J., Tapani, K., Lauronen, L., Vanhatalo, S.: A dataset of neonatal EEG recordings with seizure annotations. Sci. Data 6(1), 1–8 (2019)
Sun, C., Jiang, T., Zonouz, S., Pompili, D.: Fed2kd: heterogeneous federated learning for pandemic risk assessment via two-way knowledge distillation. In: 2022 17th Wireless On-Demand Network Systems and Services Conference (WONS), pp. 1–8. IEEE (2022)
Tan, Y., et al.: Fedproto: federated prototype learning across heterogeneous clients. In: AAAI Conference on Artificial Intelligence, vol. 1 (2022)
Timofte, R., Zimmermann, K., Van Gool, L.: Multi-view traffic sign detection, recognition, and 3d localisation. Mach. Vision Appl. 25(3), 633–647 (2014)
Van Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning, pp. 1747–1756. PMLR (2016)
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)
Wang, D., et al.: CFL-HC: a coded federated learning framework for heterogeneous computing scenarios. In: 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2021)
Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: A novel framework for the analysis and design of heterogeneous federated learning. IEEE Trans. Signal Process. 69, 5234–5249 (2021)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
Xu, C., Qu, Y., Xiang, Y., Gao, L.: Asynchronous federated learning on heterogeneous devices: a survey. arXiv preprint arXiv:2109.04269 (2021)
Xu, G., Li, H., Liu, S., Yang, K., Lin, X.: Verifynet: secure and verifiable federated learning. IEEE Trans. Inf. For. Secur. 15, 911–926 (2019)
Zaccone, R., Rizzardi, A., Caldarola, D., Ciccone, M., Caputo, B.: Speeding up heterogeneous federated learning with sequentially trained superclients. arXiv preprint arXiv:2201.10899 (2022)
Zeng, H., Zhou, T., Guo, Y., Cai, Z., Liu, F.: Fedcav: contribution-aware model aggregation on distributed heterogeneous data in federated learning. In: 50th International Conference on Parallel Processing, pp. 1–10 (2021)
Zhang, H., Kim, J.: Towards a federated learning framework for heterogeneous devices of internet of things. arXiv preprint arXiv:2105.14675 (2021)
Zhang, X., Li, F., Zhang, Z., Li, Q., Wang, C., Wu, J.: Enabling execution assurance of federated learning at untrusted participants. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1877–1886. IEEE (2020)
Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5810–5818 (2017)
Zhou, X., et al.: Two-layer federated learning with heterogeneous model aggregation for 6G supported internet of vehicles. IEEE Trans. Veh. Technol. 70(6), 5308–5317 (2021)
Acknowledgments
This paper is partly supported by the National Research and Development Plan under Grant No. 2021YFF0704102, the National Social Science Fund under Grant No. 20BJY131, the major Science and Technology Innovation of Shandong Province under Grant Nos. 2021CXGC010108, the China-Singapore International Joint Research Project under Grant No. 206-A021002, the Industrial Experts Program of Spring City, the Fundamental Research Funds of Shandong University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Huang, Y., Xu, Y., Kong, L., Li, Q., Cui, L. (2023). Towards Heterogeneous Federated Learning. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2022. Communications in Computer and Information Science, vol 1681. Springer, Singapore. https://doi.org/10.1007/978-981-99-2356-4_31
Download citation
DOI: https://doi.org/10.1007/978-981-99-2356-4_31
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-2355-7
Online ISBN: 978-981-99-2356-4
eBook Packages: Computer ScienceComputer Science (R0)