Skip to main content

A Feature Reduction-Induced Subspace Multiple Kernel Fuzzy Clustering Algorithm

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1682))

  • 481 Accesses

Abstract

High-dimensional data poses a great challenge to clustering, and subspace clustering algorithms have unique advantages when working with high-dimensional data. However, there are still some difficulties in adapting the nonlinear feature dimension, the selection and collaborative settings of kernel functions. Therefore, in this study, we come up with a feature reduction-induced subspace multiple kernel fuzzy clustering. Firstly, in order to solve the information loss caused by the nonlinear characteristics of the data, the multiple kernel clustering method is introduced, and some nonlinear features of the data are collaboratively mapped to the high-dimensional linear space, so as to better understand the characteristic information of the data. Secondly, due to the complexity of subspace and multiple kernel learning, we introduce the idea of feature reduction, and reduce the data dimension according to the importance of information, which can reduce the complexity of the algorithm on the one hand, and improve the role of important feature attributes in clustering on the other hand. Finally, the proposed RS-MKFC algorithm and the related 6 algorithms are compared on 6 ordinary datasets and 4 high-dimensional datasets, and it is found that the proposed algorithms are superior over the other 6 algorithms. At the same time, we discover the ability of RS-MKFC algorithm to screen important features as well as the function of feature reduction, and good results are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, Y.M., Ren, F.J., Pedrycz, W.: Fuzzy c-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 87, Art. no. 105928, 1–16 (2020)

    Google Scholar 

  2. Tang, Y.M., Hu, X.H., Pedrycz, W., Song, X.C.: Possibilistic fuzzy clustering with high-density viewpoint. Neurocomputing 329, 407–423 (2019)

    Article  Google Scholar 

  3. Tang, Y.M., Li, L., Liu, X.P.: State-of-the-art development of complex systems and their simulation methods. Compl. Syst. Model. Simul. 1(4), 271–290 (2021)

    Article  Google Scholar 

  4. Tang, Y.M., Pan, Z.F., Pedrycz, W., Ren, F.J., Song, X.C.: Viewpoint-based kernel fuzzy clustering with weight information granules. IEEE Trans. Emerg. Top. Comput. Intell. (2022). https://doi.org/10.1109/TETCI.2022.3201620

    Article  Google Scholar 

  5. Bai, L., Liang, J., Cao, F.: A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters. Inform. Fus. 61, 36–47 (2020)

    Article  Google Scholar 

  6. Huang, J.Z., Ng, M.K., Rong, H.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

    Article  Google Scholar 

  7. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  8. Yang, M.S.: A survey of fuzzy clustering. Math. Comput. Model. 18(11), 1–16 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  11. Pal, N.R., Pal, K., Keller, J.M., et al.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  Google Scholar 

  12. Zhang, D.Q., Chen, S.C.: Clustering incomplete Data using kernel-based fuzzy c-means algorithm. Neural Process. Let. 18(3), 155–162 (2003)

    Google Scholar 

  13. Huang, H.C., Chuang, Y.Y., Chen, C.S.: Multiple kernel fuzzy clustering. IEEE Trans. Fuzzy Syst. 20(1), 120–134 (2012)

    Article  Google Scholar 

  14. Gan, G., Wu, J., Yang, Z.: A fuzzy subspace algorithm for clustering high dimensional data. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 271–278. Springer, Heidelberg (2006). https://doi.org/10.1007/11811305_30

    Chapter  Google Scholar 

  15. Li, J., Liu, H., Tao, Z., et al.: Learnable Subspace Clustering. IEEE Trans. Neural Netw. Learn. Syst. 33(3), 1119–1133 (2022)

    Article  MathSciNet  Google Scholar 

  16. Lu, C., Feng, J., Lin, Z., et al.: Subspace clustering by block diagonal representation. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 487–501 (2018)

    Article  Google Scholar 

  17. Deng, Z., Choi, K.S., Chung, F.L., et al.: Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recogn. 43(3), 767–781 (2010)

    Article  MATH  Google Scholar 

  18. Yang, M.S., Nataliani, Y.: A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy. IEEE Trans. Fuzzy Syst. 26(2), 817–835 (2017)

    Article  Google Scholar 

  19. Xu, P., Deng, Z., Cui, C., et al.: Concise fuzzy system modeling integrating soft subspace clustering and sparse learning. IEEE Trans. Fuzzy Syst. 27(11), 2176–2189 (2019)

    Article  Google Scholar 

  20. Zhou, J., Chen, L., Chen, C.L.P., et al.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016)

    Article  Google Scholar 

  21. Cox, D.R., Lewis, P.A.W.: The Statistical Analysis of Series of Events. METHUEN & CO LTD, London (1966)

    Book  MATH  Google Scholar 

  22. Bai, Z., Wang, K., Wong, W.K.: The mean-variance ratio test - A complement to the coefficient of variation test and the Sharpe ratio test. Statist. Probab. Lett. 81(8), 1078–1085 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strehl, A., Ghosh, J.: Cluster ensembles - A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(3), 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Campello, R.J.G.B.: A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recogn. Lett. 28(7), 833–841 (2007)

    Article  Google Scholar 

  25. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA, USA (2007). http://archive.ics.usi.edu/ml/Datasets.html

  26. Tang, Y.M., Ren, F.J.: Fuzzy systems based on universal triple I method and their response functions. Int. J. Inf. Technol. Decis. Mak. 16(2), 443–471 (2017)

    Article  MathSciNet  Google Scholar 

  27. Tang, Y.M., Zhang, L., Bao, G.Q., et al.: Symmetric implicational algorithm derived from intuitionistic fuzzy entropy. Iranian J. Fuzzy Syst. 19(4), 27–44 (2022)

    MathSciNet  Google Scholar 

  28. Tang, Y.M., Pedrycz, W.: Oscillation bound estimation of perturbations under Bandler-Kohout subproduct. IEEE Trans. Cybern. 52(7), 6269–6282 (2022)

    Article  Google Scholar 

  29. Tang, Y.M., Pedrycz, W., Ren, F.J.: Granular symmetric implicational method. IEEE Trans. Emerg. Top. Comput. Intell. 6(3), 710–723 (2022)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China (Nos. 62176083, 62176084, 61877016, and 61976078), the Key Research and Development Program of Anhui Province (No. 202004d07020004), the Natural Science Foundation of Anhui Province (No. 2108085MF203), and the Fundamental Research Funds for Central Universities of China (No. PA2021GDSK0092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y., Li, B., Pan, Z., Sun, X., Chen, R. (2023). A Feature Reduction-Induced Subspace Multiple Kernel Fuzzy Clustering Algorithm. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2022. Communications in Computer and Information Science, vol 1682. Springer, Singapore. https://doi.org/10.1007/978-981-99-2385-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2385-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2384-7

  • Online ISBN: 978-981-99-2385-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics