Skip to main content

Tracing Knowledge State with Individualized Ability and Question Difficulty

  • Conference paper
  • First Online:
Computer Science and Education (ICCSE 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1811))

Included in the following conference series:

  • 658 Accesses

Abstract

Knowledge tracing(KT) refers to the task of modeling students’ evolving knowledge state according to their historical learning trajectories. Although many methods have been proposed to solve KT task, most of them ignore the difference of students and questions, i.e., the students’ learning ability are different from each other. To this end, in this paper, a learning ability estimation module is proposed to extract students’ learning ability according to their learning history and a novel method to obtain questions’ representation is designed. Besides, a knowledge state estimation module is proposed to estimation students’ knowledge state which takes both students’ learning ability and their learning interaction into consideration when modeling. Extensive experiments demonstrate that the proposed model could improve thr results of knowledge tracing through modeling individualized students’ learning ability and questions’ difficulty in learning process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/site/assistmentsdata/home.

  2. 2.

    https://github.com/riiid/ednet.

  3. 3.

    https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198.

References

  1. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  2. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state markov chains. Ann. Math. Stat. 37, 1554–1563 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cen, H., Koedinger, K., Junker, B.: Lncs 4053 - learning factors analysis - a general method for cognitive model evaluation and improvement (2006). http://www.carnegielearning.com

  4. Choi, Y., et al.: EdNet: a large-scale hierarchical dataset in education. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 69–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_13

    Chapter  Google Scholar 

  5. Cingi, C.C.: Computer aided education. Proc. - Social Behav. Sci. 103, 220–229 (11 2013). https://doi.org/10.1016/j.sbspro.2013.10.329, https://linkinghub.elsevier.com/retrieve/pii/S1877042813037749

  6. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling User-Adapted Interact. 4, 253–278 (12 1994). https://doi.org/10.1007/BF01099821

  7. Freischlad, S.: Design of exercises and test items for internetworking based on a framework of exercise classes. In: Kendall, M., Samways, B. (eds.) Learning to Live in the Knowledge Society. ITIFIP, vol. 281, pp. 261–268. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09729-9_40

    Chapter  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  9. Jr, P.I.P., Cen, H., Koedinger, K.R.: Performance factors analysis-a new alternative to knowledge tracing. Online Submission (2009)

    Google Scholar 

  10. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection, pp. 156–165 (2017)

    Google Scholar 

  11. Liu, Q., et al.: Ekt: Exercise-aware knowledge tracing for student performance prediction. IEEE Trans. Knowl. Data Eng. 33, 100–115 (2019)

    Article  Google Scholar 

  12. Lopes, A., Roodt, G., Mauer, R.: The predictive validity of the apil-b in a financial institution. SA J. Ind. Psychol. 27, 61–69 (2001)

    Article  Google Scholar 

  13. Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne (2008)

    Google Scholar 

  14. Minn, S., Yu, Y., Desmarais, M.C., Zhu, F., Vie, J.J.: Deep knowledge tracing and dynamic student classification for knowledge tracing. IEEE (2018), https://ieeexplore.ieee.org/document/8594965/

  15. Newell, A., Rosenbloom, P.S.: Mechanisms of skill acquisition and the law of practice. cognitive skills and their acquisition, jr anderson, editor (1981)

    Google Scholar 

  16. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. arXiv preprint arXiv:1907.06837 (2019)

  17. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_24

    Chapter  Google Scholar 

  18. Pardos, Z.A., Heffernan, N.T.: KT-IDEM: introducing item difficulty to the knowledge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_21

    Chapter  Google Scholar 

  19. Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  20. Rasch, G.: Probabilistic models for some intelligence and attainment tests. ERIC (1993)

    Google Scholar 

  21. Shen, S., et al.: Convolutional knowledge tracing: Modeling individualization in student learning process, pp. 1857–1860. Association for Computing Machinery, Inc (7 2020). https://doi.org/10.1145/3397271.3401288

  22. Sonkar, S., Waters, A.E., Lan, A.S., Grimaldi, P.J., Baraniuk, R.G.: qdkt: Question-centric deep knowledge tracing. arXiv preprint arXiv:2005.12442 (2020)

  23. Vie, J.J., Kashima, H.: Factorization machines for knowledge tracing. Knowl. Tracing Mach. 33, 750–757 (2019)

    Google Scholar 

  24. Wang, T., Ma, F., Gao, J.: Deep hierarchical knowledge tracing (2019)

    Google Scholar 

  25. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270–280 (6 1989). https://doi.org/10.1162/NECO.1989.1.2.270

  26. Wilson, K.H., Karklin, Y., Han, B., Ekanadham, C.: Back to the basics: Bayesian extensions of irt outperform neural networks for proficiency estimation. arXiv preprint arXiv:1604.02336 (2016)

  27. Yeung, C.K., Yeung, D.Y.: Addressing two problems in deep knowledge tracing via prediction-consistent regularization, pp. 1–10 (2018)

    Google Scholar 

  28. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing, pp. 765–774 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was funded in part by the National Natural Science Foundation of China (No. 62177032), Public Course Reform Project of Shaanxi Normal University (No. 21GGK-JG02) and the Fundamental Research Funds for the Central Universities (No. GK202205020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, B., Jiang, H., Ma, J., Zhang, R. (2023). Tracing Knowledge State with Individualized Ability and Question Difficulty. In: Hong, W., Weng, Y. (eds) Computer Science and Education. ICCSE 2022. Communications in Computer and Information Science, vol 1811. Springer, Singapore. https://doi.org/10.1007/978-981-99-2443-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2443-1_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2442-4

  • Online ISBN: 978-981-99-2443-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics