Skip to main content

Withdrawals Prediction in Virtual Learning Environments with Deep Self-paced Learning

  • Conference paper
  • First Online:
Computer Science and Education (ICCSE 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1813))

Included in the following conference series:

  • 849 Accesses

Abstract

Withdrawals prediction in virtual learning environments aims to predict student dropout by modeling student behaviour when utilizing e-learning platforms. Classic machine learning approaches lack sufficient expression ability. Deep learning methods are inclined to get stuck in the local minimum. In addition, there is not any public source code platform to comprehensively compare all the baselines. In this paper, we propose a new Withdrawals Prediction method in virtual learning environments with Deep Self-Paced Learning (WPDSPL) to deal with these two problems. Specifically, WPDSPL overcomes the bad local minimum problem by introducing self-paced learning into LSTM to gradually add data from easy ones to more complex ones during the training procedure. In addition, we deal with the inconvenient comparison problem by releasing the source code to comprehensively compare all the baselines. Comprehensive experiments demonstrate the superiority of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prenkaj, B., Velardi, P., Stilo, G., Distante, D., Faralli, S.: A survey of machine learning approaches for student dropout prediction in online courses. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

    Article  Google Scholar 

  2. Taylor, C., Veeramachaneni, K., O’Reilly, U.-M.: Likely to stop? Predicting stopout in massive open online courses. arXiv preprint arXiv:1408.3382 (2014)

  3. Amnueypornsakul, B., Bhat, S., Chinprutthiwong, P.: Predicting attrition along the way: the UIUC model. In: Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, pp. 55–59 (2014)

    Google Scholar 

  4. Al-Radaideh, Q.A., Al-Shawakfa, E.M., Al-Najjar, M.I.: Mining student data using decision trees. In: International Arab Conference on Information Technology (ACIT 2006), Yarmouk University, Jordan (2006)

    Google Scholar 

  5. Waheed, H., Hassan, S.U., Aljohani, N.R., Hardman, J., Alelyani, S., Nawaz, R.: Predicting academic performance of students from VLE big data using deep learning models. Comput. Hum. Behav. 104, 106189 (2020)

    Article  Google Scholar 

  6. Qiu, L., Liu, Y., Quan, H., Liu, Y.: Student dropout prediction in massive open online courses by convolutional neural networks. Soft. Comput. 23(20), 10287–10301 (2019)

    Article  Google Scholar 

  7. Hassan, S.U., Waheed, H., Aljohani, N.R., Ali, M., Ventura, S., Herrera, F.: Virtual learning environment to predict withdrawal by leveraging deep learning. Int. J. Intell. Syst. 34(8), 1935–1952 (2019)

    Article  Google Scholar 

  8. Mubarak, A.A., Cao, H., Ahmed, S.A.M.: Predictive learning analytics using deep learning model in MOOCs’ courses videos. Educ. Inf. Technol. 26(1), 371–392 (2021)

    Article  Google Scholar 

  9. Kumar, P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NeurIPS, pp. 1189–1197 (2010)

    Google Scholar 

  10. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML, pp. 41–48 (2009)

    Google Scholar 

  11. Wei, X., Qiu, S., Huang, K., Liu, W., Zuo, J., Guo, H.: Image deraining with adversarial residual refinement network. J. Vis. Commun. Image Represent. 77, 103133 (2021)

    Article  Google Scholar 

  12. Guo, H., Xu, W., Qiu, S.: Unsupervised low-light image enhancement with quality-task-perception loss. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  13. Qiao, Z., Xu, W., Sun, L., Qiu, S., Guo, H.: Deep semi-supervised learning for low-light image enhancement. In: 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–6. IEEE (2021)

    Google Scholar 

  14. Xu, W., Chen, X., Guo, H., Huang, X., Liu, W.: Unsupervised image restoration with quality-task-perception loss. IEEE Trans. Circuits Syst. Video Technol. 32(9), 5736–5747 (2022)

    Article  Google Scholar 

  15. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632–1640 (2019)

    Google Scholar 

  16. Xu, K., Yang, X., Yin, B., Lau, R.W.H.: Learning to restore low-light images via decomposition-and-enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2281–2290 (2020)

    Google Scholar 

  17. Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: Band representation-based semi-supervised low-light image enhancement: bridging the gap between signal fidelity and perceptual quality. IEEE Trans. Image Process. 30, 3461–3473 (2021)

    Article  Google Scholar 

  18. Zamir, S.W., et al.: Learning enriched features for fast image restoration and enhancement. arXiv preprint arXiv:2205.01649 (2022)

  19. Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.-P., Kot, A.: Low-light image enhancement with normalizing flow. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2604–2612 (2022)

    Google Scholar 

  20. Xu, X., Wang, R., Fu, C.W., Jia, J.: SNR-aware low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17714–17724 (2022)

    Google Scholar 

  21. Jiang, L., Meng, D., Yu, S., Lan, Z., Shan, S., Hauptmann, A.: Self-paced learning with diversity. In: NeurIPS, pp. 2078–2086 (2014)

    Google Scholar 

  22. Jiang, L., Meng, D., Zhao, Q., Shan, S., Hauptmann, A.: Self-paced curriculum learning. In: AAAI, pp. 6–14 (2015)

    Google Scholar 

  23. Li, H., Gong, M.: Self-paced convolutional neural networks. In: IJCAI, pp. 2110–2116 (2017)

    Google Scholar 

  24. Ren, Y., Zhao, P., Sheng, Y., Yao, D., Xu, Z.: Robust softmax regression for multi-class classification with self-paced learning. In: IJCAI, pp. 2641–2647 (2017)

    Google Scholar 

  25. Meng, D., Zhao, Q., Jiang, L.: A theoretical understanding of self-paced learning. Inf. Sci. 414, 319–328 (2017)

    Article  MATH  Google Scholar 

  26. Ren, Z., Dong, D., Li, H., Chen, C.: Self-paced prioritized curriculum learning with coverage penalty in deep reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2216–2226 (2018)

    Article  Google Scholar 

  27. Wang, K., Wang, Y., Zhao, Q., Meng, D., Liao, X., Xu, Z.: SPLBoost: an improved robust boosting algorithm based on self-paced learning. IEEE Trans. Cybern. 51(3), 1556–1570 (2019)

    Article  Google Scholar 

  28. Zhou, S., et al.: Deep self-paced learning for person re-identification. Pattern Recognit. 76, 71–78 (2017)

    Google Scholar 

  29. Yang, J., et al.: Self-paced balance learning for clinical skin disease recognition. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2832–2846 (2019)

    Article  MathSciNet  Google Scholar 

  30. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15

    Chapter  Google Scholar 

  31. Xu, W., Chi, H., Zhou, L., Huang, X., Yang, J.: Self-paced least square semi-coupled dictionary learning for person re-identification. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3705–3709. IEEE (2017)

    Google Scholar 

  32. Wei, X., Liu, W., Chi, H., Huang, X., Yang, J.: Multi-task classification with sequential instances and tasks. Signal Process. Image Commun. 64, 59–67 (2018)

    Article  Google Scholar 

  33. Wei, X., Liu, W., Huang, X., Yang, J., Qiu, S.: Multi-modal self-paced learning for image classification. Neurocomputing 309, 134–144 (2018)

    Article  Google Scholar 

  34. Wei, X., Liu, W., Chi, H., Qiu, S., Jin, Yu.: Self-paced learning with privileged information. Neurocomputing 362, 147–155 (2019)

    Article  Google Scholar 

  35. Ghasedi, K., Wang, X., Deng, C., Huang, H.: Balanced self-paced learning for generative adversarial clustering network. In: CVPR, pp. 4391–4400 (2019)

    Google Scholar 

  36. Zhang, D., Meng, D., Li, C., Jiang, L., Zhao, Q., Han, J.: A self-paced multiple-instance learning framework for co-saliency detection. In: CVPR, pp. 594–602 (2015)

    Google Scholar 

  37. Zhang, D., Han, J., Zhao, L., Meng, D.: Leveraging prior-knowledge for weakly supervised object detection under a collaborative self-paced curriculum learning framework. Int. J. Comput. Vision 127(4), 363–380 (2019)

    Article  MATH  Google Scholar 

  38. Zou, Y., Yu, Z., Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: ECCV, pp. 289–305 (2018)

    Google Scholar 

  39. Zhang, W., Dong, X., Ouyang, W., Li, W.: Self-paced collaborative and adversarial network for unsupervised domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 29, 7834–7844 (2019)

    Google Scholar 

  40. Lin, L., Wang, K., Meng, D., Zuo, W., Zhang, L.: Active self-paced learning for cost-effective and progressive face identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 7–19 (2017)

    Article  Google Scholar 

  41. Tang, Y.-P., Huang, S.-J.: Self-paced active learning: query the right thing at the right time. In: AAAI, pp. 5117–5124 (2019)

    Google Scholar 

  42. Lyu, G., Feng, S., Wang, T., Lang, C.: A self-paced regularization framework for partial-label learning. IEEE Trans. Cybern. 52(2), 899–911 (2020)

    Article  Google Scholar 

  43. Yang, L., Chen, Z., Gu, J., Guo, Y.: Dual self-paced graph convolutional network: towards reducing attribute distortions induced by topology. In: IJCAI, pp. 4062–4069 (2019)

    Google Scholar 

  44. Cascante-Bonilla, P., Tan, F., Qi, Y., Ordonez, V.: Curriculum labeling: revisiting pseudo-labeling for semi-supervised learning. In: AAAI, pp. 3062–3069 (2021)

    Google Scholar 

  45. Schmidhuber, J., Hochreiter, S., et al.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  46. Kuzilek, J., Hlosta, M., Zdrahal, Z.: Open university learning analytics dataset. Sci. Data 4(1), 1–8 (2017)

    Article  Google Scholar 

  47. Chen, D., Wu, Q., Ying, Y., Zhou, D.: Support vector machine soft margin classifiers: error analysis. J. Mach. Learn. Res. 5(9), 1143–1175 (2004)

    MathSciNet  MATH  Google Scholar 

  48. Lee, Y., Choi, J.: A review of online course dropout research: implications for practice and future research. Education Tech. Research Dev. 59(5), 593–618 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work is partly supported by Youth Project of Shanghai Philosophy and Social Science Planning (No: 2019EKS007), General project of Shanghai Educational Research (No: C2-2020103) and National Science Foundation, China (No:615723156151101179, No: 62102150 and No: 62201213), and the China Postdoctoral Science Foundation under No: 2020M681237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Xu, W., Xie, S. (2023). Withdrawals Prediction in Virtual Learning Environments with Deep Self-paced Learning. In: Hong, W., Weng, Y. (eds) Computer Science and Education. ICCSE 2022. Communications in Computer and Information Science, vol 1813. Springer, Singapore. https://doi.org/10.1007/978-981-99-2449-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2449-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2448-6

  • Online ISBN: 978-981-99-2449-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics