Skip to main content

Power Network Scheduling Strategy Based on Federated Learning Algorithm in Edge Computing Environment

  • Conference paper
  • First Online:
Big Data and Security (ICBDS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1796))

Included in the following conference series:

  • 476 Accesses

Abstract

Distributed new energy consumption scenarios, such as photovoltaic, energy storage, charging stake, etc., are facing the needs of processing massive real-time data, large-scale distributed new energy and access to diverse loads. Based on the business characteristics such as business peak-valley dynamic change, network connection and time-delay differential demand of different business in energy and power business, a reasonable and effective integrated resource scheduling model of computing resources suitable for distributed new energy consumption scenario is studied to support power planning and dynamic dispatch application. In this article, we propose an arithmetic planning strategy based on federal learning. Specifically, we first introduce a computing priority network scheduling framework in edge cloud computing environments. Secondly, we process the absorption data of corresponding energy nodes by random forest algorithm, adjust the connection relationship between a large number of internal nodes, control and dispatch the nodes, and then conduct integrated training through federal learning to dispatch the computing power of the overall network, so as to achieve fast and accurate algorithm dispatch. Then, under the same environment conditions, the simulation experiments of deep neural network and random forest algorithm are compared. A large number of simulation results show that the system can effectively assist the smart grid in reasonable algorithm dispatch and improve the resource utilization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Y., Chen, X., Fang, Y., Hu, L., Liu, J.: Federated learning for power grid scheduling: a comprehensive survey. IEEE Trans. Ind. Inf. 17(4), 2724–2733 (2021)

    Google Scholar 

  2. Cui, Y., Chen, M., Yang, Y., Zhang, Q.: Federated learning based energy management in microgrid. IEEE Trans. Smart Grid 12(2), 1371–1381 (2021)

    Google Scholar 

  3. Zhang, X., Zhang, Y., Zhang, J., Liu, X.: Edge computing and federated learning for smart grids: a survey. IEEE Trans. Ind. Inf. 16(10), 6311–6321 (2020)

    Google Scholar 

  4. Yang, Y., Zhang, L., Chen, M., Zhang, Q.: Federated learning for distributed energy management in smart grids. IEEE Trans. Ind. Inf. 16(7), 4834–4843 (2020)

    Google Scholar 

  5. Wang, S., Ma, Y., Xiong, J., Liu, Y.: Federated learning for energy internet: a survey. IEEE Trans. Ind. Inf. 17(2), 1095–1104 (2021)

    Google Scholar 

  6. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  7. Li, Y., Liu, J., Liu, H., Lu, X., Fang, Y.: Federated learning in mobile edge computing: a comprehensive survey. IEEE Commun. Surv. Tutor. 23(3), 2059–2109 (2021)

    Google Scholar 

  8. Li, C., Jin, S., Gai, K.: A survey on edge computing for the internet of things. IEEE Access 6, 6900–6919 (2018)

    Article  Google Scholar 

  9. Chai, J.Y., Zhang, Y.J., Shi, W.: Secure federated learning in resource-constrained edge computing systems. IEEE Internet Things J. 7(2), 1662–1672 (2020)

    Google Scholar 

  10. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)

    Google Scholar 

  11. Mao, Y., You, C., Zhang, J., Huang, K.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  12. Yang, Y., Liu, J., Zhang, J., Liu, Y.: A survey on mobile edge computing: architecture, applications, and optimization. IEEE Commun. Surv. Tutor. 22(3), 1628–1656 (2020)

    Google Scholar 

  13. Li, Y., Xie, J., Zhang, Y., Liu, J.: Joint optimization of energy and computation resource allocation for edge computing based on federated learning. Futur. Gener. Comput. Syst. 116, 581–592 (2021)

    Google Scholar 

  14. Bouachir, O., Aloqaily, M., Özkasap, Ö., Ali, F.: FederatedGrids: federated learning and blockchain-assisted P2P energy sharing. IEEE Trans. Green Commun. Network. 6(1), 424–436 (2022)

    Google Scholar 

  15. Zhao, L., Li, J., Li, Q., Li, F.: A federated learning framework for detecting false data injection attacks in solar farms. IEEE Trans. Power Electron. 37(3), 2496–2501 (2021)

    Google Scholar 

  16. Saputra, Y.M., Nguyen, D., Dinh, H.T., Vu, T.X., Dutkiewicz, E., Chatzinotas, S.: Federated learning meets contract theory: economic-efficiency framework for electric vehicle networks. IEEE Trans. Mob. Comput. (2020)

    Google Scholar 

  17. Liu, H., Wu, W.: Federated Reinforcement Learning for Decentralized Voltage Control in Distribution Networks

    Google Scholar 

  18. Lin, J., Ma, J., Zhu, J.: Level Behind-the-Meter Solar Generation Disaggregation

    Google Scholar 

  19. Lin, J., Ma, J., Zhu, J.: Privacy-preserving household characteristic identification with federated learning method. IEEE Trans. Smart Grid 13(2), 1088-1099 (2021)

    Google Scholar 

  20. Čaušević, S., Snijders, R., Pingen, G., Pileggi, P., Theelen, M., Warnier, M., et al.: Flexibility prediction in smart grids: making a case for federated learning (2021)

    Google Scholar 

  21. Wen, M., Xie, R., Lu, K., Wang, L., Zhang, K.: Feddetect: a novel privacy-preserving federated learning framework for energy theft detection in smart grid. IEEE Internet Things J. 9(8), 6069–6080 (2021)

    Google Scholar 

  22. Su, Z., Wang, Y., Luan, T.H., Zhang, N., Li, F., Chen, T., et al.: Secure and efficient federated learning for smart grid with edge-cloud collaboration. IEEE Trans. Industr. Inf. 18(2), 1333–1344 (2021)

    Google Scholar 

  23. Akkaya, K., Rabieh, K., Mahmoud, M., Tonyali, S.: Customized certificate revocation lists for IEEE 802.11s-based smart grid AMI networks. IEEE Trans. Smart Grid 6(5), 2366–2374 (2015)

    Google Scholar 

  24. Popoola, S.I., Ande, R., Adebisi, B., Gui, G., Hammoudeh, M., Jogunola, O.: Federated deep learning for zero-day botnet attack detection in IoT-edge devices. IEEE Internet Things J. 9(5), 3930–3944 (2021)

    Google Scholar 

  25. Gough, M.B., Santos, S.F., AlSkaif, T., Javadi, M.S., Castro, R., Catalão, J.P.: Preserving privacy of smart meter data in a smart grid environment. IEEE Trans. Industr. Inf. 18(1), 707–718 (2021)

    Google Scholar 

  26. Wang, H., Zhang, J., Lu, C., Wu, C.: Privacy preserving in non-intrusive load monitoring: a differential privacy perspective. IEEE Trans. Smart Grid 12(3), 2529–2543 (2021). https://doi.org/10.1109/TSG.2020.3038757

  27. Gough, M.B., Santos, S.F., AlSkaif, T., Javadi, M.S., Castro, R., Catalão, J.P.: Preserving privacy of smart meter data in a smart grid environment. IEEE Trans. Industr. Inf. 18(1), 707–718 (2021)

    Google Scholar 

  28. Zhao, Y., Xiao, W., Shuai, L., Luo, J., Yao, S., Zhang, M.: A differential privacyenhanced federated learning method for short-term household load forecasting in smart grid. In: 2021 7th International Conference on Computer and Communications (ICCC), pp. 1399–1404. IEEE (December 2021)

    Google Scholar 

  29. Jia, B., Zhang, X., Liu, J., Zhang, Y., Huang, K., Liang, Y.: Blockchain-enabled federated learning data protection aggregation scheme with differential privacy and homomorphic encryption in IIoT. IEEE Trans. Industr. Inf. 18(6), 4049–4058 (2021)

    Google Scholar 

  30. Bai, Y., Fan, M.: A method to improve the privacy and security for federated learning. In: 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), pp. 704–708. IEEE (April 2021)

    Google Scholar 

  31. Su, Z., Wang, Y., Luan, T.H., Zhang, N., Li, F., Chen, T., et al.: Secure and efficient federated learning for smart grid with edge-cloud collaboration. IEEE Trans. Industr. Inf. 18(2), 1333–1344 (2021)

    Google Scholar 

  32. Sun, Y., Shao, J., Mao, Y., Wang, J.H., Zhang, J.: Semi-decentralized federated edge learning for fast converge

    Google Scholar 

Download references

Acknowledgment

This work was supported by the science and technology project of State Grid Jiangsu Electric Power Co., Ltd. under Grant No. J2022051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Ding, H., Wang, J., Hua, L. (2023). Power Network Scheduling Strategy Based on Federated Learning Algorithm in Edge Computing Environment. In: Tian, Y., Ma, T., Jiang, Q., Liu, Q., Khan, M.K. (eds) Big Data and Security. ICBDS 2022. Communications in Computer and Information Science, vol 1796. Springer, Singapore. https://doi.org/10.1007/978-981-99-3300-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3300-6_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3299-3

  • Online ISBN: 978-981-99-3300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics