Skip to main content

Spatial Multiplexing Techniques and Multifrequency Cells for Massive Machine-type Communications in Future 6G Networks

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2022)

Abstract

Future 6G networks are envisioned to provide communication services to very dense infrastructures, where up to ten million devices per square kilometer could be deployed. With such a large number of devices, human intervention is not feasible and the entire communication process and management must be automated. Besides, while some applications will require enhanced broadband communications, other scenarios will be supported by channels with a limited bitrate. In this context, 6G verticals are designed to pack the required network resources for specific applications and isolate one scenario from the others, with each one providing the needed Quality-of-Service. Nevertheless, even in verticals fully prepared for massive communications, direct management of such an incredible number of devices is challenging (if not impossible) for base stations. There are, nevertheless, two scenarios where the management burden could be mitigated: when devices are slept for long periods and when devices transmit an extremely reduced bitrate. In this paper, we propose a solution for massive machine type communications for devices with an extremely reduced throughput. The proposed solution defines two levels of cells, the first level operating at native 6G frequencies, while the second one operating at high frequency (shortwave). Symbols and bit stream in the first-level cells are spatially multiplexed to cover second-level cells. In that way, hardware devices do not employ a full OFDM (Orthogonal frequency-division multiplexing) symbol, but only use one orthogonal subcarrier each. Coding and modulation at the interface between the two levels of cells are configured to make possible the access of all hardware devices to communication services. In order to validate the proposed technology, we describe our experimental evaluation based on a simulation scenario. The results show how the management workload is reduced more than ten times in 6G base stations thanks to our proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Eryani, Y., Hossain, E.: The D-OMA method for massive multiple access in 6G: performance, security, and challenges. IEEE Veh. Technol. Mag. 14(3), 92–99 (2019)

    Article  Google Scholar 

  2. Voinov, I.A., Chung, J., Kettimuthu, R., Bordel, B., Alcarria, R., Robles, T.: A review of the solutions ecosystem for 5G systems on rural and remote environments. In: 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6, June 2022

    Google Scholar 

  3. Bairagi, A.K., et al.: Coexistence mechanism between eMBB and uRLLC in 5G wireless networks. IEEE Trans. Commun. 69(3), 1736–1749 (2021)

    Article  MathSciNet  Google Scholar 

  4. Bockelmann, C., et al.: Massive machine-type communications in 5g: physical and MAC-layer solutions. IEEE Commun. Mag. 54(9), 59–65 (2016)

    Article  Google Scholar 

  5. Bogale, T.E., Le, L.B.: Massive MIMO and mmWave for 5G wireless HetNet: potential benefits and challenges. IEEE Veh. Technol. Mag. 11(1), 64–75 (2016)

    Article  Google Scholar 

  6. Bordel, B., Alcarria, R., Chung, J., Kettimuthu, R., Robles, T.: Evaluation and modeling of microprocessors’ numerical precision impact on 5G enhanced mobile broadband communications. In: Rocha, Á., Ferrás, C., López-López, P.C., Guarda, T. (eds.) ICITS 2021. AISC, vol. 1330, pp. 267–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68285-9_26

    Chapter  Google Scholar 

  7. Bordel, B., Alcarria, R., Martín, D., Sánchez-De-Rivera, D.: An agent-based method for trust graph calculation in resource constrained environments. Integr. Comput.-Aided Eng. 27(1), 37–56 (2020)

    Article  Google Scholar 

  8. Bordel, B., Alcarria, R., Robles, T.: An optimization algorithm for the efficient distribution of resources in 6G verticals. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F. (eds.) Information Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systems, vol. 468, pp 103–114. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04826-5_11

  9. Bordel, B., Alcarria, R., Robles, T.: Lightweight encryption for short-range wireless biometric authentication systems in Industry 4.0. Integr. Comput.-Aided Eng. 29(2), 153–173 (2022)

    Google Scholar 

  10. Bordel, B., Alcarria, R., Robles, T.: Recognizing human activities in Industry 4.0 scenarios through an analysis-modeling- recognition algorithm and context labels. Integr. Comput.-Aided Eng. 29(1), 83–103 (2022)

    Google Scholar 

  11. Bordel, B., Alcarria, R., Robles, T., Iglesias, M.S.: Data authentication and anonymization in IoT scenarios and future 5G networks using chaotic digital watermarking. IEEE Access 9, 22378–22398 (2021)

    Article  Google Scholar 

  12. Bordel, B., Alcarria, R., Robles, T., Sánchez-De-Rivera, D.: Service management in virtualization-based architectures for 5G systems with network slicing. Integr. Comput.-Aided Eng. 27(1), 77–99 (2020)

    Article  Google Scholar 

  13. Bordel, B., Alcarria, R., Sánchez-de-Rivera, D., Sánchez, Á.: An inter-slice management solution for future virtualization-based 5G systems. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 1059–1070. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_89

    Chapter  Google Scholar 

  14. Bordel, B., Alcarria, R., Sánchez-Picot, Á., Sánchez-de-Rivera, D.: Cyber-physical systems for environment and people monitoring in large facilities: a study case in public health. In: Rocha, Á., Ferrás, C., Paredes, M. (eds.) ICITS 2019. AISC, vol. 918, pp. 406–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11890-7_40

    Chapter  Google Scholar 

  15. Bordel, B., de Rivera, D.S., Alcarria, R.: Virtualization-based techniques for the design, management and implementation of future 5G systems with network slicing. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’18 2018. AISC, vol. 746, pp. 133–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77712-2_13

    Chapter  Google Scholar 

  16. Strinati, E.C., et al.: 6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Veh. Technol. Mag. 14(3), 42–58 (2019)

    Article  Google Scholar 

  17. Chataut, R., Akl, R.: Massive MIMO systems for 5G and beyond networks-overview, recent trends, challenges, and future research direction. Sensors 20(10), 2753 (2020)

    Article  Google Scholar 

  18. Chen, X., Ng, D.W.K., Wei, Yu., Larsson, E.G., Al-Dhahir, N., Schober, R.: Massive access for 5G and beyond. IEEE J. Sel. Areas Commun. 39(3), 615–637 (2021)

    Article  Google Scholar 

  19. Dogra, A., Jha, R.K., Jain, S.: A survey on beyond 5G network with the advent of 6G: architecture and emerging technologies. IEEE Access 9, 67512–67547 (2021)

    Article  Google Scholar 

  20. Elijah, O., Leow, C.Y., Rahman, T.A., Nunoo, S., Iliya, S.Z.: A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Commun. Surv. Tutorials 18(2), 905–923 (2016)

    Article  Google Scholar 

  21. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., Zorzi, M.: Toward 6G networks: use cases and technologies. IEEE Commun. Mag. 58(3), 55–61 (2020)

    Article  Google Scholar 

  22. Gui, G., Liu, M., Tang, F., Kato, N., Adachi, F.: 6G: opening new horizons for integration of comfort, security, and intelligence. IEEE Wirel. Commun. 27(5), 126–132 (2020)

    Article  Google Scholar 

  23. Guo, F., Yu, F.R., Zhang, H., Li, X., Ji, H., Leung, V.C.: Enabling massive IoT toward 6G: a comprehensive survey. IEEE Internet Things J. 8(15), 11891–11915 (2021)

    Article  Google Scholar 

  24. Hoydis, J., Aoudia, F.A., Valcarce, A., Viswanathan, H.: Toward a 6G AI-native air interface. IEEE Commun. Mag. 59(5), 76–81 (2021)

    Article  Google Scholar 

  25. Lee, Y.L., Qin, D., Wang, L.C., Sim, G.H.: 6G massive radio access networks: key applications, requirements and challenges. IEEE Open J. Veh. Technol. 2, 54–66 (2021)

    Article  Google Scholar 

  26. Lv, Z., Lou, R., Li, J., Singh, A.K., Song, H.: Big data analytics for 6g-enabled massive internet of things. IEEE Internet Things J. 8(7), 5350–5359 (2021)

    Article  Google Scholar 

  27. Ma, Y., Yuan, Z., LI, W., LI, Z.: Truly grant-free technologies and protocols for 6G (2021)

    Google Scholar 

  28. Mareca, P., Bordel, B.: Robust hardware-supported chaotic cryptosystems for streaming commutations among reduced computing power nodes. Analog Integr. Circ. Sig. Process. 98(1), 11–26 (2019)

    Article  Google Scholar 

  29. Kammoun, A., Debbah, M., Alouini, M.S.: Design of 5G full dimension massive MIMO systems. IEEE Trans. Commun. 66(2), 726–740 (2018)

    Article  Google Scholar 

  30. Nawaz, S.J., Sharma, S.K., Mansoor, B., Patwary, M.N., Khan, N.M.: Non-coherent and backscatter communications: enabling ultra-massive connectivity in 6G wireless networks. IEEE Access 9, 38144–38186 (2021)

    Article  Google Scholar 

  31. Papadopoulos, H., Wang, C., Bursalioglu, O., Hou, X., Kishiyama, Y.: Massive MIMO technologies and challenges towards 5G. IEICE Trans. Commun. E99.B(3), 602–621 (2016)

    Google Scholar 

  32. Surya Vara Prasad, K.N.R., Hossain, E., Bhargava, V.K.: Energy efficiency in massive MIMO-based 5G networks: opportunities and challenges. IEEE Wirel. Commun. 24(3), 86–94 (2017)

    Google Scholar 

  33. Robles, T., Bordel, B., Alcarria, R., de Andrés, D.M.: Mobile wireless sensor networks: modeling and analysis of three-dimensional scenarios and neighbor discovery in mobile data collection. Ad-Hoc Sens. Wirel. Netw. 35(1–2), 67–104 (2017)

    Google Scholar 

  34. Bordel Sánchez, B., Alcarria, R., Robles, T.: Managing wireless communications for emergency situations in urban environments through cyber-physical systems and 5G technologies. Electron 9(9), 1524 (2020)

    Article  Google Scholar 

  35. Siddiqi, M.A., Yu, H., Joung, J.: 5G ultra-reliable low-latency communication implementation challenges and operational issues with IoT devices. Electronics 8(9), 981 (2019)

    Article  Google Scholar 

  36. Taneja, A., Saluja, N., Rani, S.: An energy efficient dynamic framework for resource control in massive IoT network for smart cities. Wirel. Netw. 2022, 1–12 (2022)

    Google Scholar 

  37. Valentini, L., Faedi, A., Chiani, M., Paolini, E.: Coded random access for 6G: intra-frame spatial coupling with ACKs. In: Proceedings of 2021 IEEE Globecom Workshops, GC Wkshps 2021 (2021)

    Google Scholar 

  38. Verma, S., Kaur, S., Khan, M.A., Sehdev, P.S.: Toward green communication in 6g-enabled massive internet of things. IEEE Internet Things J. 8(7), 5408–5415 (2021)

    Article  Google Scholar 

  39. Wen, F., Wymeersch, H., Peng, B., Tay, W.P., So, H.C., Yang, D.: A survey on 5G massive MIMO localization. Digital Sig. Process. 94, 21–28 (2019)

    Article  Google Scholar 

  40. Yang, B., Zhiqiang, Yu., Dong, Y., Zhou, J., Hong, W.: Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems. IEEE Trans. Antennas Propag. 65(12), 6721–6727 (2017)

    Article  Google Scholar 

  41. Yang, B., Zhiqiang, Yu., Lan, J., Zhang, R., Zhou, J., Hong, W.: Digital Beamforming-Based Massive MIMO Transceiver for 5G Millimeter-Wave Communications. IEEE Trans. Microwave Theor. Tech. 66(7), 3403–3418 (2018)

    Article  Google Scholar 

  42. Zhang, J., Linglong Dai, X., Li, Y.L., Hanzo, L.: On low-resolution ADCs in practical 5G millimeter-wave massive MIMO systems. IEEE Commun. Mag. 56(7), 205–211 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This publication was produced within the framework of Ramón Alcarria and Borja Bordel’s research projects on the occasion of their stay at Argonne National Laboratory (José Castillejo’s 2021 grant). This work is supported by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors (PRINCE project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Bordel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bordel, B., Alcarria, R., Chung, J., Voinov, I.A. (2023). Spatial Multiplexing Techniques and Multifrequency Cells for Massive Machine-type Communications in Future 6G Networks. In: You, I., Kim, H., Angin, P. (eds) Mobile Internet Security. MobiSec 2022. Communications in Computer and Information Science, vol 1644. Springer, Singapore. https://doi.org/10.1007/978-981-99-4430-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4430-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4429-3

  • Online ISBN: 978-981-99-4430-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics