Skip to main content

A Deep Transfer Fusion Model for Recognition of Acute Lymphoblastic Leukemia with Few Samples

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14087))

Included in the following conference series:

  • 919 Accesses

Abstract

Distinguishing between different sub-classes of Acute Lymphoblastic leukemia (ALL) based on morphological differences in blood smear images is challenging. Deep learning methods have been successful for morphological classification. This paper aims to develop a deep transfer fusion model (TFDNet) to predict ALL sub-classes using a few blood cell images. TFDNet is a customized Convolutional Neural Network (CNN) that consists of two transfer learning modules, Xception and Dense, working in parallel for feature extraction. TFDNet then utilizes a two-branch feature extraction layer to fuse the multi-scale features for the diagnosis of ALL sub-classes. To evaluate the effectiveness and generalizability of TFDNet, we compare it with seven state-of-the-art methods on five different datasets, including three small-sample ALL types, as well as skin cancer and brain cancer data. The experimental results demonstrate that TFDNet outperforms the seven state-of-the-art methods on all five datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Availability and Implementation

All the code and image data in this paper are available at https://github.com/xin242328/TFDNet, which allows researchers to replicate our experiments to verify the results and use the methods and data for further research in their own fields. And All models were implemented using tensorflow-gpu (version 2.4.0), and all training processes were trained on the GPU (GeForce GTX 1080) in Linux.

References

  1. Steven, H., et al.: The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20), 2375–2390 (2016)

    Google Scholar 

  2. Li, Z., Zhang, P., Xie, N., Zhang, G., Wen, C.-F.: A novel three-way decision method in a hybrid information system with images and its application in medical diagnosis. Eng. Appl. Artif. Intell. 92, Article no. 103651 (2020)

    Google Scholar 

  3. Putzu, L., Caocci, G., Ruberto, C.D.: Leucocyte classifification for leukaemia detection using image processing techniques. Artif. Intell. Med. 62(3), 179–191 (2014)

    Article  Google Scholar 

  4. Saraswat, M., Arya, K.V.: Automated microscopic image analysis for leukocytes identifification: a survey. Micron 65, 20–33 (2014)

    Article  Google Scholar 

  5. Nazlibilek, S., Karacor, D., Ercan, T., Sazli, M.H., Kalender, O., Ege, Y.: Automatic segmentation, counting, size determination and classifification of white blood cells. Measurement 55, 58–65 (2014)

    Article  Google Scholar 

  6. Coudray, N., et al.: Classifification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559–1567 (2018)

    Article  Google Scholar 

  7. Yari, Y., Nguyen, T.V., Nguyen, H.T.: Deep learning applied for histological diagnosis of breast cancer. IEEE Access 8, 162432–162448 (2020)

    Article  Google Scholar 

  8. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229 (2013)

  9. Chollet, F.: Xception: deep learning with depthwise separable convolutions (2017)

    Google Scholar 

  10. Huang, G., Liu, Z., van der Maaten, L.: Densely connected convolutional networks (2018)

    Google Scholar 

  11. Reta, C., Robles, L.A., Gonzalez, J.A., Diaz, R., Guichard, J.S.: Segmentation of bone marrow cell images for morphological classification of acute leukemia. In: Proceedings of the 23rd International FLAIRS Conference, Daytona Beach, FL, USA, May 2010

    Google Scholar 

  12. Putzu, L., Caocci, G., Ruberto, C.D.: Leucocyte classifification for leukaemia detection using image processing techniques. Artif. Intell. Med. 62, 179–191 (2014)

    Article  Google Scholar 

  13. Patel, N., Mishra, A.: Automated leukaemia detection using microscopic images. Procedia Comput. Sci. 58, 635–642 (2015)

    Article  Google Scholar 

  14. Singhal, V., Singh, P.: Texture features for the detection of acute lymphoblastic leukemia. In: Satapathy, S.C., Joshi, A., Modi, N., Pathak, N. (eds.) Proceedings of International Conference on ICT for Sustainable Development. AISC, vol. 409, pp. 535–543. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0135-2_52

    Chapter  Google Scholar 

  15. Laosai, J., Chamnongthai, K.: Acute leukemia classification by using SVM and K-means clustering. In: Proceedings of the 2014 IEEE International Electrical Engineering Congress (iEECON), Chonburi, Thailand, 19–21 March 2014, pp. 1–4 (2014)

    Google Scholar 

  16. Singhal, V., Singh, P.: Local binary pattern for automatic detection of acute lymphoblastic leukemia. In: Proceedings of the 2014 Twentieth National Conference on Communications (NCC), Kanpur, India, 28 February–2 March 2014, pp. 1–5 (2014)

    Google Scholar 

  17. Song, Z., et al.: Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 11(1), 1–9 (2020)

    Article  MathSciNet  Google Scholar 

  18. Gehrung, M., Crispin-Ortuzar, M., Berman, A.G., O’Donovan, M., Fitzgerald, R.C., Markowetz, F.: Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat. Med. 27(5), 833–841 (2021)

    Article  Google Scholar 

  19. Rehman, A., Abbas, N., Saba, T., Rahman, S.I.u., Mehmood, Z., Kolivand, H.: Classification of acute lymphoblastic leukemia using deep learning. Microsc. Res. Tech. 81, 1310–1317 (2018)

    Google Scholar 

  20. Shafifique, S., Tehsin, S.: Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol. Cancer Res. Treat. 17(1533033818802789) (2018). 31

    Google Scholar 

  21. Anaya-Isaza, A., Mera-Jiménez, L.: Data augmentation and transfer learning for brain tumor detection in magnetic resonance imaging, 24 February 2022

    Google Scholar 

  22. Pansombut, T., Wikaisuksakul, S., Khongkraphan, K., Phon-On, A.: Convolutional neural networks for recognition of lymphoblast cell images. Comput. Intell. Neurosci. 2019 (2019)

    Google Scholar 

  23. Habibzadeh, M., Jannesari, M., Rezaei, Z., Baharvand, H., Totonchi, M.: Automatic white blood cell classification using pre-trained deep learning models: ResNet and inception. In: Proceedings of the Tenth International Conference on Machine Vision (ICMV 2017), International Society for Optics and Photonics, Vienna, Austria, 13–15 November 2017, vol. 10696, p. 1069612 (2017)

    Google Scholar 

  24. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  25. Labati, R.D., Piuri, V., Scotti, F.: The acute lymphoblastic leukemia image database for image processing. In: 18th IEEE International Conference on Image Processing (ICIP); Università degli Studi di Milano, Department of Information Technology, via Bramante 65, vol. 26013, pp. 2089–2092 (2011)

    Google Scholar 

  26. Honomichl, N.: The cancer imaging archive (TCIA), C_NMC_2019 dataset: All challenge dataset of ISBI (2019).https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758223

  27. Kaggle (2023). https://www.kaggle.com/datasets/kylegraupe/skin-cancer-binary-classification-dataset

  28. Kaggle (2021). https://www.kaggle.com/datasets/denizkavi1/brain-tumor

  29. Loey, M., Naman, M., Zayed, H.: Deep transfer learning in diagnosing leukemia in blood cells, 15 April 2020

    Google Scholar 

  30. Vogado, L., et al.: Diagnosis of leukaemia in blood slides based on a fine-tuned and highly generalisable deep learning model. Sensors 21, 2989 (2021)

    Google Scholar 

  31. Boldú, L., Merino, A., Acevedo, A., Molina, A., Rodellar, J.: A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images (2021)

    Google Scholar 

  32. Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China under Grant 2020YFA0908700, the National Nature Science Foundation of China under Grant 62176164, 62203134, the Natural Science Foundation of Guangdong Province under Grant 2023A1515010992, Science and Technology Innovation Committee Foundation of Shenzhen City under Grant JCYJ20220531101217039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, Z., Xia, X., Fang, M., Yu, L., Li, J. (2023). A Deep Transfer Fusion Model for Recognition of Acute Lymphoblastic Leukemia with Few Samples. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14087. Springer, Singapore. https://doi.org/10.1007/978-981-99-4742-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4742-3_59

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4741-6

  • Online ISBN: 978-981-99-4742-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics