Skip to main content

MGCPI: A Multi-granularity Neural Network for Predicting Compound-Protein Interactions

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Abstract

The identification of compound-protein interactions (CPIs) is an essential step in the drug discovery process; however, existing sequence-based or graph-based single-granularity compound representations have difficulty in accurately predicting CPIs. In this paper, we propose MGCPI (Multi-granularity CPI), an end-to-end deep learning framework to predict the compound-protein interactions, which integrates the molecular features of both graph and sequence representation from the input and mines protein structure information by transformer and pre-training methods. Our experiments demonstrated that the multi-granularity molecular representation method is able to fuse protein information from multiple perspectives to enhance the predictive capability of the model and achieve competitive or higher performance compared to various existing CPI prediction methods. Additionally, the ablative analysis verified that the multi-granularity model is more robust than single representation-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bredel, M., Jacoby, E.: Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat. Rev. Genet. 5(4), 262–275 (2004)

    Article  Google Scholar 

  2. Bleakley, K., Yamanishi, Y.: Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)

    Article  Google Scholar 

  3. Cheng, F., Zhou, Y., Li, J., et al.: Prediction of chemical–protein interactions: multitarget-QSAR versus computational chemogenomic methods. Mol. BioSyst. 8(9), 2373–2384 (2012)

    Article  Google Scholar 

  4. Gönen, M.: Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)

    Article  Google Scholar 

  5. Jacob, L., Vert, J.P.: Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19), 2149–2156 (2008)

    Google Scholar 

  6. Van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21), 3036–3043 (2011)

    Article  Google Scholar 

  7. Wang, F., Liu, D., Wang, H., et al.: Computational screening for active compounds targeting protein sequences: methodology and experimental validation. J. Chem. Inf. Model. 51(11), 2821–2828 (2011)

    Article  Google Scholar 

  8. Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29(13), i126–i134 (2013)

    Article  Google Scholar 

  9. Yamanishi, Y., Araki, M., Gutteridge, A., et al.: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  10. Gilmer, J., Schoenholz, S.S., Riley, P.F., et al.: Neural message passing for quantum chemistry. International conference on machine learning. PMLR, 1263–1272 (2017)

    Google Scholar 

  11. Hu, W., Liu, B., Gomes, J., et al.: Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265 (2019)

  12. Mansimov, E., Mahmood, O., Kang, S., et al.: Molecular geometry prediction using a deep generative graph neural network. Sci. Rep. 9(1), 20381 (2019)

    Article  Google Scholar 

  13. Nguyen, T., Le, H., Quinn, T.P., et al.: GraphDTA: predicting drug–target binding affinity with graph neural networks. Bioinformatics 37(8), 1140–1147 (2021)

    Article  Google Scholar 

  14. Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263 (2017)

  15. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  16. Xu, K., Hu, W., Leskovec, J., et al.: How powerful are graph neural networks?. arXiv preprint arXiv:1810.00826 (2018)

  17. Karimi, M., Wu, D., Wang, Z., et al.: DeepAffinity: interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019)

    Article  Google Scholar 

  18. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chemi. Info. Comp. Sci. 28(1), 31–36 (1988)

    Google Scholar 

  19. Chen, Y., Wu, L., Zaki, M.J.: Reinforcement learning based graph-to-sequence model for natural question generation. arXiv preprint arXiv:1908.04942 (2019)

  20. Pareja, A., Domeniconi, G., Chen, J., et al.: Evolvegcn: evolving graph convolutional networks for dynamic graphs. Proceedings of the AAAI conference on artificial intelligence 34(04), 5363–5370 (2020)

    Google Scholar 

  21. Yu, W., Yu, M., Zhao, T., et al.: Identifying referential intention with heterogeneous contexts. Proceedings of The Web Conference 2020, pp. 962–972 (2020)

    Google Scholar 

  22. Zhang, C., Huang, C., Yu, L., et al.: Camel: content-aware and meta-path augmented metric learning for author identification. Proceedings of the World Wide Web Conference. 2018, 709–718 (2018)

    Google Scholar 

  23. Zhang, C., Swami, A., Chawla, N.V.: Shne: Representation learning for semantic-associated heterogeneous networks. Proceedings of the twelfth ACM international conference on web search and data mining, pp. 690–698 (2019)

    Google Scholar 

  24. Landrum, G.: RDKit: Open-source cheminformatics (2006)

    Google Scholar 

  25. O’Boyle, N.M.: Towards a universal SMILES representation-a standard method to generate canonical SMILES based on the InChI. Journal of Cheminformatics 4, 1–14 (2012)

    Article  Google Scholar 

  26. Wu, Z., Pan, S., Chen, F., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Sys. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  27. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adva. Neural Info. Proce. Sys. 30 (2017)

    Google Scholar 

  28. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  29. Chen, L., Tan, X., Wang, D., et al.: TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 36(16), 4406–4414 (2020)

    Article  Google Scholar 

  30. Liu, H., Sun, J., Guan, J., et al.: Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics 31(12), i221–i229 (2015)

    Article  Google Scholar 

  31. Wishart, D.S., Knox, C., Guo, A.C., et al.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research 36(suppl_1), D901-D906 (2008)

    Google Scholar 

  32. Günther, S., Kuhn, M., Dunkel, M., et al.: SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Research 36(suppl_1), D919-D922 (2007)

    Google Scholar 

  33. Tsubaki, M., Tomii, K., Sese, J.: Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019)

    Article  Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  35. Mei, J.P., Kwoh, C.K., Yang, P., et al.: Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)

    Article  Google Scholar 

  36. Xia, Z., Wu, L.Y., Zhou, X., et al.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC systems biology BioMed Central 4(2), 1–16 (2010)

    Google Scholar 

  37. Zheng, X., Ding, H., Mamitsuka, H., et al.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1025–1033 (2013)

    Google Scholar 

  38. Liu, Y., Wu, M., Miao, C., et al.: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput. Biol. 12(2), e1004760 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, P., Jiang, L., Ahmed, F.S., Ruan, X., Liu, X., Liu, J. (2023). MGCPI: A Multi-granularity Neural Network for Predicting Compound-Protein Interactions. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics