Skip to main content

A Novel Graph Representation Learning Model for Drug Repositioning Using Graph Transition Probability Matrix Over Heterogenous Information Networks

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14088))

Included in the following conference series:

  • 809 Accesses

Abstract

Computational drug repositioning is a promising strategy in discovering new indicators for approved or experimental drugs. However, most of computational-based methods fall short of taking into account the non-Euclidean nature of biomedical network data. To address this challenge, we propose a graph representation learning model, called DDAGTP, for drug repositioning using graph transition probability matrix in heterogenous information networks (HINs), In particular, DDAGTP first integrates three different types of drug-disease, drug-protein and protein-disease association networks and their biological knowledge to construct a heterogeneous information network (HIN). Then, a graph convolution autoencoder model is adopted by combining graph transfer probabilities to learn the feature representation of drugs and diseases. Finally, DDAGTP incorporates a CatBoost classifier to complete the task of drug-disease association prediction. Experimental results demonstrate that DDAGTP achieves the excellent performance on all benchmark datasets when compared with state-of-the-art prediction models in terms of several evaluation metrics.

D.-X. Li and X. Deng---Co-first authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jourdan, J.-P., Bureau, R., Rochais, C., Dallemagne, P.: Drug repositioning: a brief overview. J. Pharm. Pharmacol. 72, 1145–1151 (2020). https://doi.org/10.1111/jphp.13273

    Article  Google Scholar 

  2. Dickson, M., Gagnon, J.P.: The cost of new drug discovery and development. Discov. Med. 4, 172–179 (2009)

    Google Scholar 

  3. Ashburn, T.T., Thor, K.B.: Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004). https://doi.org/10.1038/nrd1468

    Article  Google Scholar 

  4. Yella, J.K., Yaddanapudi, S., Wang, Y., Jegga, A.G.: Changing trends in computational drug repositioning. Pharmaceuticals 11, 57 (2018). https://doi.org/10.3390/ph11020057

    Article  Google Scholar 

  5. You, Z.-H., Li, X., Chan, K.C.: An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers. Neurocomputing 228, 277–282 (2017). https://doi.org/10.1016/j.neucom.2016.10.042

    Article  Google Scholar 

  6. Hu, L., Yuan, X., Liu, X., Xiong, S., Luo, X.: Efficiently detecting protein complexes from protein interaction networks via alternating direction method of multipliers. IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 1922–1935 (2019). https://doi.org/10.1109/TCBB.2018.2844256

    Article  Google Scholar 

  7. Hu, L., Chan, K.C.C., Yuan, X., Xiong, S.: A variational bayesian framework for cluster analysis in a complex network. IEEE Trans. Knowl. Data Eng. 32, 2115–2128 (2020). https://doi.org/10.1109/TKDE.2019.2914200

    Article  Google Scholar 

  8. Hu, L., Wang, X., Huang, Y.-A., Hu, P., You, Z.-H.: A novel network-based algorithm for predicting protein-protein interactions using gene ontology. Front Microbiol. 12, 735329 (2021). https://doi.org/10.3389/fmicb.2021.735329

    Article  Google Scholar 

  9. Li, Z., Hu, L., Tang, Z., Zhao, C.: Predicting HIV-1 protease cleavage sites with positive-unlabeled learning. Front Genet. 12, 658078 (2021). https://doi.org/10.3389/fgene.2021.658078

    Article  Google Scholar 

  10. Hu, L., Zhang, J., Pan, X., Yan, H., You, Z.-H.: HiSCF: leveraging higher-order structures for clustering analysis in biological networks. Bioinformatics 37, 542–550 (2021). https://doi.org/10.1093/bioinformatics/btaa775

    Article  Google Scholar 

  11. Zhao, B.-W., et al.: A novel method to predict drug-target interactions based on large-scale graph representation learning. Cancers 13, 2111 (2021). https://doi.org/10.3390/cancers13092111

    Article  Google Scholar 

  12. Zhao, B.-W., You, Z.-H., Wong, L., Zhang, P., Li, H.-Y., Wang, L.: MGRL predicting drug-disease associations based on multi-graph representation learning. Front. Genet. 12, 657182 (2021)

    Article  Google Scholar 

  13. Hu, L., Pan, X., Yan, H., Hu, P., He, T.: Exploiting higher-order patterns for community detection in attributed graphs. ICA. 28, 207–218 (2021). https://doi.org/10.3233/ICA-200645

    Article  Google Scholar 

  14. Hu, L., Zhang, J., Pan, X., Luo, X., Yuan, H.: An effective link-based clustering algorithm for detecting overlapping protein complexes in protein-protein interaction networks. IEEE Trans. Netw. Sci. Eng. 8, 3275–3289 (2021). https://doi.org/10.1109/TNSE.2021.3109880

    Article  Google Scholar 

  15. Hu, P., et al.: Learning from low-rank multimodal representations for predicting disease-drug associations. BMC Med. Inform. Decis. Mak. 21(Suppl 1), 308 (2021). https://doi.org/10.1186/s12911-021-01648-x

    Article  Google Scholar 

  16. Luo, H., Li, M., Yang, M., Wu, F.-X., Li, Y., Wang, J.: Biomedical data and computational models for drug repositioning: a comprehensive review. Brief. Bioinform. 22, 1604–1619 (2021). https://doi.org/10.1093/bib/bbz176

    Article  Google Scholar 

  17. Luo, H., Li, M., Wang, S., Liu, Q., Li, Y., Wang, J.: Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics 34, 1904–1912 (2018). https://doi.org/10.1093/bioinformatics/bty013

    Article  Google Scholar 

  18. Luo, Y., et al.: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun. 8, 1–13 (2017). https://doi.org/10.1038/s41467-017-00680-8

    Article  Google Scholar 

  19. Chen, C., et al.: DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network. Comput. Biol. Med. 136, 104676 (2021). https://doi.org/10.1016/j.compbiomed.2021.104676

    Article  Google Scholar 

  20. Ding, Y., Tang, J., Guo, F.: Identification of drug–target interactions via fuzzy bipartite local model. Neural Comput. Appl. 32(14), 10303–10319 (2019). https://doi.org/10.1007/s00521-019-04569-z

    Article  Google Scholar 

  21. Zhao, B.-W., Hu, L., You, Z.-H., Wang, L., Su, X.-R.: HINGRL: predicting drug–disease associations with graph representation learning on heterogeneous information networks. Briefings Bioinform. 23, bbab515 (2022). https://doi.org/10.1093/bib/bbab515

    Article  Google Scholar 

  22. Su, X., Hu, L., You, Z., Hu, P., Zhao, B.: Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings Bioinform. 23, bbac140 (2022). https://doi.org/10.1093/bib/bbac140

    Article  Google Scholar 

  23. Yu, J.-L., Dai, Q.-Q., Li, G.-B.: Deep learning in target prediction and drug repositioning: recent advances and challenges. Drug Discov. Today 27, 1796–1814 (2022). https://doi.org/10.1016/j.drudis.2021.10.010

    Article  Google Scholar 

  24. Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R., Cheng, F.: deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 35, 5191–5198 (2019). https://doi.org/10.1093/bioinformatics/btz418

    Article  Google Scholar 

  25. Jiang, H.-J., You, Z.-H., Huang, Y.-A.: Predicting drug−disease associations via sigmoid kernel-based convolutional neural networks. J. Transl. Med. 17, 382 (2019). https://doi.org/10.1186/s12967-019-2127-5

    Article  Google Scholar 

  26. Wang, S., Du, Z., Ding, M., Rodriguez-Paton, A., Song, T.: KG-DTI: a knowledge graph based deep learning method for drug-target interaction predictions and Alzheimer’s disease drug repositions. Appl. Intell. 52(1), 846–857 (2021). https://doi.org/10.1007/s10489-021-02454-8

    Article  Google Scholar 

  27. Wen, M., et al.: Deep-learning-based drug-target interaction prediction. J. Proteome Res. 16, 1401–1409 (2017). https://doi.org/10.1021/acs.jproteome.6b00618

    Article  Google Scholar 

  28. Zhao, B.-W., Su, X.-R., Hu, P.-W., Ma, Y.-P., Zhou, X., Hu, L.: A geometric deep learning framework for drug repositioning over heterogeneous information networks. Briefings Bioinform. 23, bbac384 (2022). https://doi.org/10.1093/bib/bbac384

    Article  Google Scholar 

  29. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34, 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418

    Article  Google Scholar 

  30. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost: unbiased boosting with categorical features. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. (2018)

    Google Scholar 

  31. Zhang, W., et al.: Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinform. 19, 1–12 (2018). https://doi.org/10.1186/s12859-018-2220-4

    Article  Google Scholar 

  32. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7, 496 (2011). https://doi.org/10.1038/msb.2011.26

    Article  Google Scholar 

  33. Luo, H., et al.: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 32, 2664–2671 (2016). https://doi.org/10.1093/bioinformatics/btw228

    Article  Google Scholar 

  34. Kipf, T.N., Welling, M.: Variational Graph Auto-Encoders (2016). https://doi.org/10.48550/arXiv.1611.07308

  35. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)

    Google Scholar 

  36. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. J. Chemom. 18, 275–285 (2004). https://doi.org/10.1002/cem.873

    Article  Google Scholar 

  37. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. (2017)

    Google Scholar 

  38. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 785–794. ACM, San Francisco California USA (2016). https://doi.org/10.1145/2939672.2939785

  39. LaValley, M.P.: Logistic regression. Circulation 117, 2395–2399 (2008). https://doi.org/10.1161/CIRCULATIONAHA.106.682658

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of Xinjiang Uygur Autonomous Region under grant 2021D01D05, in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciences, in part by CAS Light of the West Multidisciplinary Team project under grant xbzg-zdsys-202114, and in part by the Xinjiang Tianchi Talents Program under grant E33B9401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, DX. et al. (2023). A Novel Graph Representation Learning Model for Drug Repositioning Using Graph Transition Probability Matrix Over Heterogenous Information Networks. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics