Skip to main content

Identifying Drug–Target Interactions Through a Combined Graph Attention Mechanism and Self-attention Sequence Embedding Model

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14088))

Included in the following conference series:

  • 774 Accesses

Abstract

Identifying drug–target interactions (DTIs) is a critical part of the drug discovery and drug development processes. Although wet lab-based methods are still the most reliable to determine DTIs, their cost and time are unaffordable. Therefore, it is particularly important to develop an effective computational method to predict DTIs. Here, we built an end-to-end deep learning framework with the Simplified Molecular Input Linear Entry System (SMILES) and protein sequences as raw data, and introduced a graph neural network and graph attention mechanism to learn the SMILES-transformed molecular graph features. We used Word2vec to process protein sequences and extract semantic features of protein sequences combined with self-attention sequence embedding models. After each group of control experiments, we used area under the ROC curve and area under the PR curve as the main evaluation indicators, and the mean of the five-fold cross-validation as the final result. The results showed that the model shows good performance on the C. elegans and human benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan, F., Zeng, J.M.: Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv, p. 086033 (2016)

    Google Scholar 

  2. Mahmud, S.M.H., Chen, W., Jahan, H., et al.: DeepACTION: a deep learning-based method for predicting novel drug-target interactions. Anal. Biochem. 610, 113978 (2020)

    Article  Google Scholar 

  3. Li, Y., Liu, X., You, Z.H., et al.: A computational approach for predicting drug–target interactions from protein sequence and drug substructure fingerprint information. Int. J. Intell. Syst. 36(1), 593–609 (2021)

    Article  Google Scholar 

  4. Wishart, D.S., Knox, C., Guo, A.C., et al.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucl. Acids Res. 36(Suppl_1), D901–D906 (2008)

    Google Scholar 

  5. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  6. Burley, S.K., Berman, H.M., Bhikadiya, C., et al.: RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucl. Acids Res. 47(D1), D464–D474 (2019)

    Article  Google Scholar 

  7. Kim, S., Thiessen, P.A., Bolton, E.E., et al.: PubChem substance and compound databases. Nucl. Acids Res. 44(D1), D1202–D1213 (2016)

    Article  Google Scholar 

  8. Peng, J., Li, J., Shang, X.: A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network. BMC Bioinform. 21(13), 1–13 (2020)

    Google Scholar 

  9. Zhu, S., Okuno, Y., Tsujimoto, G., et al.: A probabilistic model for mining implicit ‘chemical compound–gene’ relations from literature. Bioinformatics 21(Suppl_2), ii245–ii251 (2005)

    Google Scholar 

  10. Campillos, M., Kuhn, M., Gavin, A.C., et al.: Drug target identification using side-effect similarity. Science 321(5886), 263–266 (2008)

    Article  Google Scholar 

  11. Mousavian, Z., Khakabimamaghani, S., Kavousi, K., et al.: Drug–target interaction prediction from PSSM based evolutionary information. J. Pharmacolog. Toxicolog. Methods 78, 42–51 (2016)

    Article  Google Scholar 

  12. https://pubchem.ncbi.nlm.nih.gov/

  13. Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of distantly related proteins. Proc. Natl. Acad. Sci. 84(13), 4355–4358 (1987)

    Article  Google Scholar 

  14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  15. Wang, Y.B., You, Z.H., Yang, S., et al.: A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med. Inform. Decis. Mak. 20(2), 1–9 (2020)

    Google Scholar 

  16. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  17. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  18. Asgari, E., Mofrad, M.R.K.: Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS ONE 10(11), e0141287 (2015)

    Article  Google Scholar 

  19. Jaeger, S., Fulle, S., Turk, S.: Mol2vec: unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model. 58(1), 27–35 (2018)

    Article  Google Scholar 

  20. Zhang, Y.F., Wang, X., Kaushik, A.C., et al.: SPVec: a Word2vec-inspired feature representation method for drug-target interaction prediction. Front. Chem. 7, 895 (2020)

    Article  Google Scholar 

  21. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010)

    Article  Google Scholar 

  22. Deerwester, S., Dumais, S.T., Furnas, G.W., et al.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  23. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  24. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Xiong, Z., Wang, D., Liu, X., et al.: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J. Med. Chem. 63(16), 8749–8760 (2019)

    Article  Google Scholar 

  26. Lin, Z., Feng, M., Santos, C.N., et al.: A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017)

  27. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  28. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  29. Liu, H., Sun, J., Guan, J., et al.: Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics 31(12), i221–i229 (2015)

    Article  Google Scholar 

  30. Tsubaki, M., Tomii, K., Sese, J.: Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019)

    Article  Google Scholar 

  31. https://www.rdkit.org/

  32. Nguyen, T., Le, H., Quinn, T.P., et al.: GraphDTA: predicting drug–target binding affinity with graph neural networks. Bioinformatics 37(8), 1140–1147 (2021)

    Article  Google Scholar 

  33. Zheng, S., Li, Y., Chen, S., et al.: Predicting drug–protein interaction using quasi-visual question answering system. Nat. Mach. Intell. 2(2), 134–140 (2020)

    Article  Google Scholar 

  34. Chen, L., Tan, X., Wang, D., et al.: TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 36(16), 4406–4414 (2020)

    Article  Google Scholar 

  35. Jumper, J., Evans, R., Pritzel, A., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 61972299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., Hu, J., Zhang, X. (2023). Identifying Drug–Target Interactions Through a Combined Graph Attention Mechanism and Self-attention Sequence Embedding Model. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics