Skip to main content

DETA-Net: A Dual Encoder Network with Text-Guided Attention Mechanism for Skin-Lesions Segmentation

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Abstract

Skin-lesions segmentation plays a prominent role in computer-aided diagnosis systems for skin cancer, especially the remarkable success of the convolutional neural network (CNN) approaches in skin-lesions segmentation. However, it faces intractable challenges such as variable shape and blurred skin lesions boundaries. To this end, past research has employed cutting-edge mechanisms, including diverse attention modules. Inspired by state-of-the-art works, this study proposed a Dual Encoder framework with a Text-Guided Attention Network (DETA-Net) which can accurately and efficiently segment various and blurred lesions. Firstly, we designed a multi-scale joint encoder that took the advantage of both the CNNs and Transformer to extract features under the blurred lesion background condition. In addition, we introduced text-guided attention to propel classification in the manner of text-based embedding in the DETA-Net so that the variation in the size and number of the lesion can be efficiently accommodated. Experimental results demonstrated that DETA-Net provided better performance across multiple datasets compared with state-of-the-art on variable-sized skin lesion datasets in Skin-Cancer detection. We also evaluated the effectiveness of DETA-Net through extensive ablation studies on three different datasets, including ISIC 2016, ISIC 2018, and PH2 datasets. The baseline achieved 0.8838 Dice on ISIC 2016, 0.8864 Dice on ISIC 2018, and 0.8695 Dice on PH2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, B., Qadir, M.I., Ghafoor, S.: Malignant melanoma: skin cancer- diagnosis, prevention, and treatment. Crit. Rev. Eukaryot. Gene Expr. 30(4) (2020)

    Google Scholar 

  2. Barnhill, R.L., Piepkorn, M., Busam, K.J.: Pathology of Melanocytic Nevi and Malignant Melanoma. Springer Science & Business Media (2004). https://doi.org/10.1007/978-0-387-21619-5

  3. Jemal, A., Devesa, S.S., Hartge, P., Tucker, M.A.: Recent trends in cutaneous melanoma incidence among whites in the United States. J. Natl. Cancer Inst. 93(9), 678–683 (2001)

    Article  Google Scholar 

  4. Qadir, M.I.: Skin cancer: etiology and management. Pak. J. Pharm. Sci. 29(3) (2016)

    Google Scholar 

  5. Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: FAT-Net: Feature adaptive transformers for automated skin lesion segmentation. Med. Image Anal. 76, 102327 (2022)

    Article  Google Scholar 

  6. Lei, B., et al.: Skin lesion segmentation via generative adversarial networks with dual discriminators. Med. Image Anal. 64, 101716 (2020)

    Article  Google Scholar 

  7. He, X., Yu, Z., Wang, T., Lei, B.: Skin Lesion Segmentation via Deep Refinenet. In: MICCAI 2017, pp. 303–311. Springer (2017). https://doi.org/10.1007/978-3-319-67558-9_35

  8. Cui, X., et al.: Assessing the effectiveness of artificial intelligence methods for melanoma: a retrospective review. J. Am. Acad. Dermatol. 81(5), 1176–1180 (2019), X., Yu, Z., Wang, T., Lei, B.: Skin lesion segmentation via deep refinenet. In: MICCAI 2017, pp. 303–311. Springer (2017)

    Google Scholar 

  9. Yuan, Y., Chao, M., Lo, Y.C.: Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)

    Article  Google Scholar 

  10. Bi, L., Kim, J., Ahn, E., Kumar, A., Fulham, M., Feng, D.: Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans. Biomed. Eng. 64(9), 2065–2074 (2017)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: a nested u-net architecture for medical image segmentation. In: DLMIA 2018, pp. 3–11. Springer (2018). https://doi.org/10.1007/978-3-030-00889-5_1

  13. Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.D.: Doubleu-net: a deep convolutional neural network for medical image segmentation. In: CBMS 2020, pp. 558–564. IEEE (2020)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Mehta, S., Mercan, E., Bartlett, J., Weaver, D., Elmore, J.G., Shapiro, L.: Ynet: joint segmentation and classification for diagnosis of breast biopsy images. In: MICCAI 2018, pp. 893–901. Springer (2018). https://doi.org/10.48550/arXiv.1806.01313

  16. Xiao, F., et al.: RCGA-net: An improved multi-hybrid attention mechanism network in biomedical image segmentation. In: BIBM 2021, pp. 1112–1118. IEEE (2021)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  18. Dosovitskiy, A., et al.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929 (2020)

  19. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: ICCV 2021, pp. 10012–10022 (2021)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778 (2016)

    Google Scholar 

  21. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: CVPR 2022, pp. 11976–11986 (2022)

    Google Scholar 

  22. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  23. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: Efficient channel attention for deep convolutional neural networks. In: CVPR 2020, pp. 11531–11539 (2020). https://doi.org/10.1109/CVPR42600.2020.01155

  24. Tomar, N.K., Jha, D., Bagci, U., Ali, S.: TGANet: text-guided attention for improved polyp segmentation. In: MICCAI 2022, pp. 151–160. Springer (2022). https://doi.org/10.1007/978-3-031-16437-8_15

  25. Abraham, N., Khan, N.M.: A novel focal tversky loss function with improved attention u-net for lesion segmentation. In: ISBI 2019, pp. 683–687. IEEE (2019)

    Google Scholar 

  26. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3d fully convolutional deep networks. In: MICCAI 2017, pp. 379– 387. Springer (2017). https://doi.org/10.1007/978-3-319-67389-9_44

  27. Ding Y., Tang J., Guo F.: Identification of drug-target interactions via dual Laplacian regularized least squares with multiple kernel fusion. Knowl.-Based Syst. 204, 106254 (2020)

    Google Scholar 

  28. Ding, Y., Tang, J., Guo, F.: Protein crystallization identification via fuzzy model on linear neighborhood representation. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(5), 1986-1995 (2021)

    Google Scholar 

  29. Ding, Y., Tiwari, P., Zou, Q., Guo, F.: Hari Mohan Pandey. C-loss based higher-order fuzzy inference systems for identifying DNA N4-methylcytosine sites, IEEE Trans. Fuzzy Syst. 30(11), 4754–4765 (2022)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the reviewers for their valuable comments and suggestions. We would also like to thank our colleagues. This work is sponsored in part by National Natural Science Foundation of China (No. 62106175, 62072107), Natural Science Foundation of Fujian Province (2020J01610), and Postgraduate Scientific Research Innovation Practice Program of Tianjin University of Technology (YJ2249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, C., Wang, X., Tang, J., Liao, Z. (2023). DETA-Net: A Dual Encoder Network with Text-Guided Attention Mechanism for Skin-Lesions Segmentation. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics