Skip to main content

Spatial Domain Identification Based on Graph Attention Denoising Auto-encoder

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14088))

Included in the following conference series:

  • 830 Accesses

Abstract

One of the great challenges faced by spatial transcriptomics research is to identify spatial domains that have similarities in gene expression and histology. Most research only depends on gene expression information and is incapable of efficiently utilizing spatial information. Auto-encoder has been proven to be an effective foundation for unsupervised learning. However, traditional auto-encoder cannot utilize explicit relationships in structured data. In order to make better use of embedded feature representation and exploit relationships in graph structured data, an improvement has been made to the graph attention auto-encoder: the auto-encoder is made up of three encoder layers and three decoder layers, and random Gaussian noise is added to the encoder’s working process, thereby generating a graph attention denoising auto-encoder (GADAE). Latent embeddings in low dimensions can be learned by merging spatial information with underlying expression patterns to effectively identify spatial domains. Experimental results show that compared to competitive methods, it can identify spatial domains and locate genes with more abundant spatial expression patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodriques, S.G., et al.: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363(6434), 1463–1467 (2019)

    Article  Google Scholar 

  2. Stickels, R.R., et al.: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39(3), 313–319 (2021)

    Article  Google Scholar 

  3. Eng, C.-H.L., Shah, S., Thomassie, J., Cai, L.: Profiling the transcriptome with RNA SPOTs. Nat. Methods 14(12), 1153–1155 (2017)

    Article  Google Scholar 

  4. Cai, L.: Transcriptome-scale super-resolved imaging in tissues by RNA SeqFISH. Eur. J. Hum. Genet. 28(S1), 10 (2020)

    MathSciNet  Google Scholar 

  5. Moffitt, J.R., Zhuang, X.: RNA imaging with multiplexed error-robust fluorescence in situ hybridization (MERFISH). In: Methods in Enzymology, pp. 1–49. Elsevier (2016)

    Google Scholar 

  6. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. Roy. Stat. Soc.: Ser C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  7. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  8. Hua, J., Liu, H., Zhang, B., Jin, S.: LAK: Lasso and K-means based single-cell RNA-Seq data clustering analysis. IEEE Access 8, 129679–129688 (2020)

    Article  Google Scholar 

  9. Hao, Y., et al.: Integrated analysis of multimodal single-cell data. Cell 184(13), 3573–3587 (2021)

    Article  Google Scholar 

  10. Zhao, E., et al.: Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39(11), 1375–1384 (2021)

    Article  Google Scholar 

  11. Pham, D., et al.: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv, p. 2020.05. 31.125658 (2020)

    Google Scholar 

  12. Tian, T., Wan, J., Song, Q., Wei, Z.: Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat. Mach. Intell. 1(4), 191–198 (2019)

    Article  Google Scholar 

  13. Hu, J., et al.: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18(11), 1342–1351 (2021)

    Article  Google Scholar 

  14. Dong, K., Zhang, S.: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13(1), 1739 (2022)

    Article  Google Scholar 

  15. McInnes, L., Healy, J., Melville, J.: Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  16. Fraley, C., Raftery, A.E., Murphy, T.B., Scrucca, L.: mclust version 4 for R: normal mixture modeling for model-based clustering, classification, and density estimation, Technical report (2012)

    Google Scholar 

  17. Salehi, A., Davulcu, H.: Graph attention auto-encoders. arXiv preprint arXiv:1905.10715 (2019)

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  19. Wolf, F.A., Angerer, P., Theis, F.J.: Scanpy for analysis of large-scale single-cell gene expression data. bioRxiv, p. 174029 (2017)

    Google Scholar 

  20. Fu, H., et al.: Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv, p. 2021.06.15.448542 (2021)

    Google Scholar 

  21. Maynard, K.R., et al.: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24(3), 425–436 (2021)

    Article  Google Scholar 

  22. Li, J., Chen, S., Pan, X., Yuan, Y., Shen, H.-B.: Cell clustering for spatial transcriptomics data with graph neural networks. Nat. Comput. Sci. 2(6), 399–408 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant No. 62172254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Xing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Y., Zhang, DJ., Jiao, CN., Gao, YL., Liu, JX. (2023). Spatial Domain Identification Based on Graph Attention Denoising Auto-encoder. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics