Skip to main content

Prediction of LncRNA-Protein Interactions Based on Multi-kernel Fusion and Graph Auto-Encoders

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Abstract

With the increasing amount of recognized lncRNAs, people are paying much more attention than before mining their potential function of them, which performs biological functions by interacting with proteins. However, facing the huge amount of biological data, it is obvious that biological experiments only in vitro and in vivo are time-consuming and insufficient. To this end, this study proposed a framework for LncRNA-Protein Interactions prediction based on Multi-kernel fusion and Graph Auto-Encoders (LPI-MGAE). First, three feature kernels should be constructed in lncRNA and protein space, respectively. Secondly, three feature kernels are fused separately using the average weighted strategy. Then, the embedding of the feature kernels can be extracted with a graph auto-encoder consisting of two-layer graph convolutional networks. Finally, a regularized least squares classifier can be used to derive the final prediction results. 5-fold cross-validation shows that LPI-MGAE obtains successful outcomes on both Dataset1 and Dataset2, with an AUPR of 19.37%–34.67% higher on Dataset1 compared to the baseline methods. Simultaneously, LPI-MGAE also has achieved 0.1%–15.76% higher AUC and 16.54%–63.55% higher AUPR on Dataset2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Djebali, S., et al.: Landscape of transcription in human cells. Nature 489(7414), 101–108 (2012)

    Article  Google Scholar 

  2. Statello, L., Guo, C.-J., Chen, L.-L., Huarte, M.: Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22(2), 96–118 (2021)

    Article  Google Scholar 

  3. Derrigo, M., Cestelli, A., Savettieri, G., Di Liegro, I.: RNA-protein interactions in the control of stability and localization of messenger RNA. Int. J. Mol. Med. 5(2), 111–134 (2000)

    Google Scholar 

  4. Li, C.H., Chen, H.: Targeting long non-coding RNAs in cancers: progress and prospects. Int. J. Biochem. Cell Biol. 45(8), 1895–1910 (2013)

    Article  Google Scholar 

  5. Ferre, F., Colantoni, A., Helmer-Citterich, M.: Revealing protein–lncRNA interaction. Brief. Bioinform. 17(1), 106–116 (2016)

    Article  Google Scholar 

  6. Li, S., et al.: Long noncoding RNA HOTAIR interacts with Y-Box Protein-1 (YBX1) to regulate cell proliferation. Life Sci. Alliance 4(9) (2021)

    Google Scholar 

  7. Tu, Y., et al.: LncRNA-WAKMAR2 regulates expression of CLDN1 to affect skin barrier through recruiting c-Fos. Contact Dermat. (2022)

    Google Scholar 

  8. Zheng, X., et al.: Fusing multiple protein-protein similarity networks to effectively predict lncRNA-protein interactions. BMC Bioinform. 18(12), 11–18 (2017)

    Google Scholar 

  9. Zhang, W., Qu, Q., Zhang, Y., Wang, W.: The linear neighborhood propagation method for predicting long non-coding RNA–protein interactions. Neurocomputing 273, 526–534 (2018)

    Article  Google Scholar 

  10. Shen, C., Ding, Y., Tang, J., Jiang, L., Guo, F.: LPI-KTASLP: prediction of lncRNA-protein interaction by semi-supervised link learning with multivariate information. IEEE Access 7, 13486–13496 (2019)

    Article  Google Scholar 

  11. Shen, C., Ding, Y., Tang, J., Guo, F.: Multivariate information fusion with fast kernel learning to kernel ridge regression in predicting lncRNA-protein interactions. Front. Genet. 9, 716 (2019)

    Article  Google Scholar 

  12. Zhou, L., Wang, Z., Tian, X., Peng, L.: LPI-deepGBDT: a multiple-layer deep framework based on gradient boosting decision trees for lncRNA–protein interaction identification. BMC Bioinf. 22(1), 1–24 (2021)

    Article  Google Scholar 

  13. Li, W., Wang, S., Guo, H.: LPI-FKLGCN: predicting LncRNA-protein interactions through fast kernel learning and graph convolutional network. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds.) ISBRA 2021. LNCS, vol. 13064, pp. 227–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91415-8_20

    Chapter  Google Scholar 

  14. Jin, C., Shi, Z., Zhang, H., Yin, Y.: Predicting lncRNA-protein interactions based on graph autoencoders and collaborative training. In: BIBM, pp. 38–43 (2021)

    Google Scholar 

  15. Huang, X., Shi, Y., Yan, J., Wenyan, Q., Li, X., Tan, J.: LPI-CSFFR: combining serial fusion with feature reuse for predicting LncRNA-protein interactions. Comput. Biol. Chem. 99, 107718 (2022)

    Article  Google Scholar 

  16. Yuan, J., Wu, W., Xie, C., Zhao, G., Zhao, Y., Chen, R.: NPInter v2. 0: an updated database of ncRNA interactions. Nucleic Acids Res. 42(D1), D104–D108 (2014)

    Google Scholar 

  17. Xie, C., et al.: NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 42(D1), D98–D103 (2014)

    Article  Google Scholar 

  18. Gough, J., Karplus, K., Hughey, R., Chothia, C.: Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 313(4), 903–919 (2001)

    Article  Google Scholar 

  19. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  20. Ding, Y., Tang, J., Guo, F.: Identification of protein–protein interactions via a novel matrix-based sequence representation model with amino acid contact information. Int. J. Mol. Sci. 17(10), 1623 (2016)

    Article  Google Scholar 

  21. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  22. Shen, J., et al.: Predicting protein–protein interactions based only on sequences information. Proc. Natl. Acad. Sci. U.S.A. 104(11), 4337–4341 (2007)

    Article  Google Scholar 

  23. Chou, K.-C., Shen, H.-B.: MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun. 360(2), 339–345 (2007)

    Article  Google Scholar 

  24. Wan, S., Mak, M.-W., Kung, S.-Y.: GOASVM: a subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou’s pseudo-amino acid composition. J. Theor. Biol. 323, 40–48 (2013)

    Article  MATH  Google Scholar 

  25. Welling, M., Kipf, T.N.: Semi-supervised classification with graph convolutional networks. In: ICLR (2016)

    Google Scholar 

  26. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  27. Van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21), 3036–3043 (2011)

    Article  Google Scholar 

  28. Sarwar, B., Karypis, G., Konstan, J., Riedl, R.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)

    Google Scholar 

  29. Gan, M.: Walking on a user similarity network towards personalized recommendations. PLoS ONE 9(12), e114662 (2014)

    Article  Google Scholar 

  30. Ge, M., Li, A., Wang, M.: A bipartite network-based method for prediction of long non-coding RNA–protein interactions. Genomics Proteomics Bioinf. 14(1), 62–71 (2016)

    Article  Google Scholar 

  31. Li, A., Ge, M., Zhang, Y., Peng, C., Wang, M.: Predicting long noncoding RNA and protein interactions using heterogeneous network model. BioMed. Res. Int. 671950 (2015)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the reviewers for their valuable comments and suggestions. We would also like to thank our colleagues for their collaboration with the team. This work is sponsored in part by the National Natural Science Foundation of China (No. 62106175, 62072107), the Natural Science Foundation of Fujian Province(2020J01610), and the College Students’ Innovation and Entrepreneurship Training Program of Tianjin University of Technology (2022100601080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, D. et al. (2023). Prediction of LncRNA-Protein Interactions Based on Multi-kernel Fusion and Graph Auto-Encoders. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics