Skip to main content

Prediction of circRNA-Binding Protein Site Based on Hybrid Neural Networks and Recurrent Forests Method

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14088))

Included in the following conference series:

  • 804 Accesses

Abstract

Circular RNAs (circRNAs) play an important role in the regulation of autoimmune diseases by binding to RNA–binding proteins (RBP). Therefore studying the binding sites of RBP on cyclic RNA is crucial for our understanding of the interactions between RBP and its RNA targets. In this paper, we propose the classification method CNBM-RRF based on hybrid neural networks and recurrent forests method for identifying circRNA-RBP interaction sites. In the CNBM-DRAF method, we use four coding methods to extract four features of the cyclic RNA sequences. The features include pseudo amino acid features, pseudo dipeptide features, pseudo secondary structure features, and pseudo word vector features. Then we feed the features into the hybrid neural network to obtain the common features of the cyclic RNA sequences. The hybrid neural network includes the convolutional neural network (CNN) and the bi-directional long short-term memory network (BiLSTM). In addition we use weighted generalized canonical correlation analysis (WGCCA) to extract the common features of the four features. Finally we input common features into recurrent forests for prediction of RBP binding sites on circular RNAs. The proposed recurrent forests method is inspired by Long Short Term Memory (LSTM). We test it on 10 circRNA datasets and compare it with 7 existing methods. The experimental results show that the prediction performance of CNBM-RRF method is improved compared with that of the existing 7 methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rong, D., et al.: An emerging function of circrna-mirnas-mrna axis in human diseases. Oncotarget 8(42), 73271 (2017)

    Google Scholar 

  2. Sanger, H.L., Klotz, G., Riesner, D., Gross, H.J., Kleinschmidt, A.K.: Viroids are single-stranded covalently closed circular rna molecules existing as highly basepaired rod-like structures. Proc. Natl. Acad. Sci. 73(11), 3852–3856 (1976)

    Article  Google Scholar 

  3. Lu, D., Xu, A.D.: Mini review: circular rnas as potential clinical biomarkers for disorders in the central nervous system. Front. Genet. 7, 53 (2016)

    Article  Google Scholar 

  4. Holdt, L.M., Kohlmaier, A., Teupser, D.: Molecular roles and function of circular RNAS in eukaryotic cells. Cell. Mol. Life Sci. 75(6), 1071–1098 (2018)

    Article  Google Scholar 

  5. Hansen, T.B., et al.: Natural RNA circles function as efficient microrna sponges. Nature 495(7441), 384–388 (2013)

    Article  Google Scholar 

  6. Qu, S., et al.: Circular RNA: a new star of noncoding rnas. Cancer Lett. 365(2), 141–148 (2015)

    Article  Google Scholar 

  7. Ebbesen, K.K., Kjems, J., Hansen, T.B.: Circular rnas: identification, biogenesis and function. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1859(1), 163–168 (2016)

    Google Scholar 

  8. Zhang, B., Chen, M., Jiang, N., Shi, K., Qian, R.: A regulatory circuit of circmto1/mir-17/qki-5 inhibits the proliferation of lung adenocarcinoma. Cancer Biol. Therapy 20(8), 1127–1135 (2019). (Prediction of circRNA-binding protein site 15)

    Google Scholar 

  9. Wang, R., et al.: Eif4a3-induced circular rna mmp9 (circmmp9) acts as a sponge of mir-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol. Cancer 17(1), 1–12 (2018)

    Google Scholar 

  10. He, Z., et al.: Fus/circ_002136/mir-138-5p/sox13 feedback loop regulates angiogenesis in glioma. J. Exp. Clin. Cancer Res. 38, 1–19 (2019)

    Google Scholar 

  11. Ascano, M., Hafner, M., Cekan, P., Gerstberger, S., Tuschl, T.: Identification of rna–protein interaction networks using par-clip. Wiley Interdiscipl. Rev. RNA 3(2), 159–177 (2012)

    Article  Google Scholar 

  12. Barnes, C., Kanhere, A.: Identification of rna–protein interactions through in vitro RNA pull-down assays. Polycomb Group Proteins: Methods and Protocols, pp. 99–113 (2016)

    Google Scholar 

  13. Ju, Y., Yuan, L., Yang, Y., Zhao, H.: Circslnn: identifying rbp-binding sites on circrnas via sequence labeling neural networks. Front. Genetics 1184 (2019)

    Google Scholar 

  14. Zhang, K., Pan, X., Yang, Y., Shen, H.B.: Crip: predicting circrna–rbp-binding sites using a codon-based encoding and hybrid deep neural networks. RNA 25(12), 1604–1615 (2019)

    Article  Google Scholar 

  15. Wang, Z., Lei, X., Wu, F.X.: Identifying cancer-specific circrna–rbp binding sites based on deep learning. Molecules 24(22), 4035 (2019)

    Article  Google Scholar 

  16. Jia, C., Bi, Y., Chen, J., Leier, A., Li, F., Song, J.: Passion: an ensemble neural network approach for identifying the binding sites of rbps on circrnas. Bioinformatics 36(15), 4276–4282 (2020)

    Article  Google Scholar 

  17. Yang, Y., Hou, Z., Ma, Z., Li, X., Wong, K.C.: icircrbp-dhn: identification of circrna-rbp interaction sites using deep hierarchical network. Briefings Bioinform. 22(4), bbaa274 (2021)

    Google Scholar 

  18. Niu, M., Zou, Q., Lin, C.: Crbpdl: identification of circrna-rbp interaction sites using an ensemble neural network approach. PLoS Comput. Biol. 18(1), e1009798 (2022)

    Article  Google Scholar 

  19. Li, H., et al.: circrna-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier. Briefings Bioinform. 23(1), bbab394 (2022)

    Google Scholar 

  20. Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W.: Cd-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23), 3150–3152 (2012)

    Article  Google Scholar 

  21. Pan, X., Yang, Y., Xia, C.Q., Mirza, A.H., Shen, H.B.: Recent methodology progress of deep learning for RNA–protein interaction prediction. Wiley Interdiscipl. Rev. RNA 10(6), e1544 (2019)

    Article  Google Scholar 

  22. Feng, P., Chen, W., Lin, H.: Identifying antioxidant proteins by using optimal dipeptide compositions. Interdiscipl. Sci. Comput. Life Sci. 8, 186–191 (2016)

    Article  Google Scholar 

  23. Hofacker, I.L.: R na secondary structure analysis using the vienna rna package. Curr. Protoc. Bioinform. 26(1), 12–22 (2009)

    Article  Google Scholar 

  24. Budach, S., Marsico, A.: Pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. Bioinformatics 34(17), 3035–3037 (2018)

    Article  Google Scholar 

  25. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196. PMLR (2014)

    Google Scholar 

  26. Glažar, P., Papavasileiou, P., Rajewsky, N.: Circbase: a database for circular RNAS. RNA 20(11), 1666–1670 (2014)

    Article  Google Scholar 

  27. Alzubaidi, L., et al.: Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. J. big Data 8, 1–74 (2021)

    Article  Google Scholar 

  28. Siami-Namini, S., Tavakoli, N., Namin, A.S.: The performance of lstm and bilstm in forecasting time series. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3285–3292. IEEE (2019)

    Google Scholar 

  29. Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. arXiv preprint arXiv:1702.02519 (2017)

  30. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  31. Zhou, Z.H., Feng, J.: Deep forest: Towards an alternative to deep neural networks. In: IJCAI, pp. 3553–3559 (2017)

    Google Scholar 

  32. Sørensen, M., Kanatsoulis, C.I., Sidiropoulos, N.D.: Generalized canonical correlation analysis: a subspace intersection approach. IEEE Trans. Signal Process. 69, 2452–2467 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61671220), University Innovation Team Project of Jinan (2019GXRC015), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfang Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Meng, Q., Zhang, Q., Zhang, J. (2023). Prediction of circRNA-Binding Protein Site Based on Hybrid Neural Networks and Recurrent Forests Method. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics