Skip to main content

Deep Learning-Based Prediction of Drug-Target Binding Affinities by Incorporating Local Structure of Protein

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14088))

Included in the following conference series:

  • 778 Accesses

Abstract

Traditional drug discovery methods are both time-consuming and expensive. Utilizing artificial intelligence to predict drug-target binding affinity (DTA) has become an essential approach for accelerating new drug discovery. While many deep learning methods have been developed for DTA prediction, most of them only consider the primary sequence structure of proteins. However, drug-target interactions occur only in specific regions of the protein, and the primary structure can only represent the global protein features, which fails to fully disclose the relationship between the drug and its target. In this study, we used both the primary and secondary protein structures to represent the protein. The primary structure served as the global feature, and the secondary structure as the local feature. We use convolutional neural networks (CNNs) and graph neural networks (GNNs) to model proteins and drugs separately, which helped to better capture the interactions between drugs and targets. As a result, our method demonstrated improved performance in predicting DTA comparing to the latest methods on two benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMasi, J.A., Grabowski, H.G., Hansen, R.W.: Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016)

    Article  Google Scholar 

  2. Mullard A. New drugs cost US $2.6 billion to develop[J]. Nature reviews. Drug discovery, 2014, 13(12): 877

    Google Scholar 

  3. Ding, Y., Tang, J., Guo, F.: Identification of drug–target interactions via dual laplacian regularized least squares with multiple kernel fusion. Knowl.-Based Syst. 204, 106254 (2020)

    Article  Google Scholar 

  4. Sun, M., Tiwari, P., Qian, Y., et al.: MLapSVM-LBS: predicting DNA-binding proteins via a multiple Laplacian regularized support vector machine with local behavior similarity. Knowl.-Based Syst. 250, 109174 (2022)

    Article  Google Scholar 

  5. Ding, Y., Tang, J., Guo, F.: Identification of drug–target interactions via fuzzy bipartite local model[J]. Neural Comput. Appl. 32, 10303–10319 (2020)

    Article  Google Scholar 

  6. Yamanishi, Y., Kotera, M., Kanehisa, M., et al.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), i246–i254 (2010)

    Article  Google Scholar 

  7. Tang, J., Szwajda, A., Shakyawar, S., et al.: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J. Chem. Inf. Model. 54(3), 735–743 (2014)

    Article  Google Scholar 

  8. Yang, H., Ding, Y., Tang, J., et al.: Drug–disease associations prediction via multiple kernel-based dual graph regularized least squares. Appl. Soft Comput. 112, 107811 (2021)

    Article  Google Scholar 

  9. Ding, Y., Tang, J., Guo, F.: Human protein subcellular localization identification via fuzzy model on kernelized neighborhood representation. Appl. Soft Comput. 96, 106596 (2020)

    Article  Google Scholar 

  10. Wu, H., Ling, H., Gao, L., et al.: Empirical potential energy function toward ab initio folding G protein-coupled receptors. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(5), 1752–1762 (2020)

    Article  Google Scholar 

  11. Karimi, M., Wu, D., Wang, Z., et al.: Explainable deep relational networks for predicting compound–protein affinities and contacts. J. Chem. Inf. Model. 61(1), 46–66 (2020)

    Article  Google Scholar 

  12. Ding, Y., Tang, J., Guo, F.: Identification of drug-target interactions via multi-view graph regularized link propagation model. Neurocomputing 461, 618–631 (2021)

    Article  Google Scholar 

  13. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Google Scholar 

  14. Ding, Y., Tang, J., Guo, F.: Identification of drug-side effect association via semisupervised model and multiple kernel learning. IEEE J. Biomed. Health Inform. 23(6), 2619–2632 (2018)

    Article  Google Scholar 

  15. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: deep drug–target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  16. Öztürk, H., Ozkirimli, E., Özgür, A.: WideDTA: prediction of drug-target binding affinity. arXiv preprint arXiv:1902.04166 (2019)

  17. Nguyen, T., Le, H., Quinn, T.P., et al.: GraphDTA: predicting drug–target binding affinity with graph neural networks. Bioinformatics 37(8), 1140–1147 (2021)

    Article  Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  19. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  20. Xu, K., Hu, W., Leskovec, J., et al.: How powerful are graph neural networks?.arXiv preprint arXiv:1810.00826 (2018)

  21. Yang, Z., Zhong, W., Zhao, L., et al.: Mgraphdta: deep multiscale graph neural network for explainable drug–target binding affinity prediction. Chem. Sci. 13(3), 816–833 (2022)

    Article  Google Scholar 

  22. Karimi, M., Wu, D., Wang, Z., et al.: DeepAffinity: interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019)

    Article  Google Scholar 

  23. Davis, M.I., Hunt, J.P., Herrgard, S., et al.: Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29(11), 1046–1051 (2011)

    Article  Google Scholar 

  24. Guermeur, Y., et al.: Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics (Oxford, England) 15(5), 413–421 (1999)

    Google Scholar 

  25. Combet, C., et al.: NPS@: network protein sequence analysis. Trends Biochem. Sci. 25(3 (2000): 147–150

    Google Scholar 

  26. Wang, H., Tang, J., Ding, Y., et al.: Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment. Brief. Bioinform. 22(5), bbaa409 (2021)

    Google Scholar 

  27. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopoly. Original Res. Biomol. 22(12), 2577–2637 (1983)

    Google Scholar 

  28. Wan, L., Zeiler, M., Zhang, S., et al.: Regularization of neural networks using dropconnect. In: International Conference on Machine Learning, pp. 1058–1066. PMLR (2013)

    Google Scholar 

  29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  30. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  31. Zhao, Q., Xiao, F., Yang, M., et al.: AttentionDTA: prediction of drug–target binding affinity using attention model. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 64–69. IEEE (2019)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by the National Natural Science Foundation of China (62073231, 62176175, 61902271), National Research Project (2020YFC2006602), Provincial Key Laboratory for Computer Information Processing Technology, Soochow University (KJS2166). Opening Topic Fund of Big Data Intelligent Engineering Laboratory of Jiangsu Province (SDGC2157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R., Zhu, B., Jiang, T., Cui, Z., Wu, H. (2023). Deep Learning-Based Prediction of Drug-Target Binding Affinities by Incorporating Local Structure of Protein. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics