Skip to main content

Drug-Target Interaction Prediction Based on Interpretable Graph Transformer Model

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14088))

Included in the following conference series:

  • 896 Accesses

Abstract

This study proposes a novel architecture for drug-target interaction (DTI) prediction by leveraging protein binding sites and self-attention mechanisms. The architecture consists of four modules: Data Preparation, Graph Embedding Learning, Feature Extraction, and Prediction. Protein binding sites are extracted from the 3D structure of proteins using a simulation-based model in the Data Preparation module to simplify model complexity. A map of protein pockets and ligands is then generated and utilized to learn embeddings using Topology Adaptive Graph Convolutional Networks to extract global and local features of the protein pocket and ligand. The protein pocket and ligand signature are fused via the Self-attentive Bidirectional Long Short-Term Memory block to obtain a representation of the drug-target complex. The resulting cascaded representation is then fed into a binary classifier for predicting DTI. By employing the self-attention mechanism in the network, the attention output is computed using cascading embeddings of drug-target pairs as inputs, enabling interpretability by identifying the protein regions that interact with ligands in a given drug-target pair. The experimental results demonstrate the superiority of the proposed architecture over existing DTI predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi Mesrabadi, H., Faez, K., Pirgazi, J.: Drug–target interaction prediction based on protein features, using wrapper feature selection. Sci. Rep. 13, 3594 (2023). https://doi.org/10.1038/s41598-023-30026-y

    Article  Google Scholar 

  2. Soh, J., Park, S., Lee, H.: HIDTI: integration of heterogeneous information to predict drug-target interactions. Sci. Rep. 12, 3793 (2022). https://doi.org/10.1038/s41598-022-07608-3

    Article  Google Scholar 

  3. Azuaje, F., Zhang, L., Devaux, Y., et al.: Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci. Rep. 1, 52 (2011). https://doi.org/10.1038/srep00052

    Article  Google Scholar 

  4. Beroza, P., Crawford, J.J., Ganichkin, O., et al.: Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors. Nat. Commun. 13, 6447 (2022). https://doi.org/10.1038/s41467-022-33981-8

    Article  Google Scholar 

  5. Crunkhorn, S.: Novel virtual screening approach. Nat. Rev. Drug. Discov. 16, 18 (2017). https://doi.org/10.1038/nrd.2016.272

    Article  Google Scholar 

  6. Ding, Y., Tang, J., Guo, F.: Identification of drug–target interactions via dual Laplacian regularized least squares with multiple kernel fusion. Knowl.-Based Syst. 204, 106254 (2020)

    Google Scholar 

  7. Ding, Y., Tang, J., Guo, F.: Identification of drug–target interactions via fuzzy bipartite local model. Neural Comput. Appl. 32(14), 10303–10319 (2019). https://doi.org/10.1007/s00521-019-04569-z

    Article  Google Scholar 

  8. Ding, Y., Tang, J., Guo, F.: Identification of drug-side effect association via semisupervised model and multiple kernel learning. IEEE J. Biomed. Health Inform. 23(6), 2619–2632 (2018)

    Google Scholar 

  9. Ding, Y., Tang, J., Guo, F.: Identification of drug-target interactions via multi-view graph regularized link propagation model. Neurocomputing 461, 618–631 (2021)

    Article  Google Scholar 

  10. Peng, J., Li, J., Shang, X.: A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network. BMC Bioinform. 21(Suppl 13), 394 (2020). https://doi.org/10.1186/s12859-020-03677-1. PMID: 32938374; PMCID: PMC7495825

  11. Karimi, M., Wu, D., Wang, Z., Shen, Y.: DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019). https://doi.org/10.1093/bioinformatics/btz111. PMID: 30768156; PMCID: PMC6748780

  12. Veličković, P., et al.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  13. Torng, W., Altman, R.B.: Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 59(10), 4131–4149 (2019)

    Google Scholar 

  14. Lim, J., et al.: Predicting drug–target interaction using a novel graph neural network with 3D structure-embedded graph representation. J. Chem. Inf. Model. 59(9), 3981–3988 (2019)

    Article  Google Scholar 

  15. Zhao, T., Hu, Y., Valsdottir, L.R., Zang, T., Peng, J.: Identifying drug–target interactions based on graph convolutional network and deep neural network. Brief. Bioinform. 22(2), 2141–2150 (2021). https://doi.org/10.1093/bib/bbaa044

    Article  Google Scholar 

  16. Zhao, B.W., et al.: A novel method to predict drug-target interactions based on large-scale graph representation learning. Cancers (Basel). 13(9), 2111 (2021). https://doi.org/10.3390/cancers13092111. PMID: 33925568; PMCID: PMC8123765

  17. Ding, Y., Tang, J., Guo, F.: Protein crystallization identification via fuzzy model on linear neighborhood representation. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(5), 1986–1995 (2019)

    Google Scholar 

  18. Fathi, S., Majid, S., Tuszynski, J.A.: A simple method for finding a protein’s ligand-binding pockets. BMC Struct. Biol. 14(1), 1–9 (2014)

    Google Scholar 

  19. Ding, Y., Tang, J., Guo, F.: Human protein subcellular localization identification via fuzzy model on kernelized neighborhood representation. Appl. Soft Comput. 96, 106596 (2020)

    Google Scholar 

  20. Wu, H., et al.: Empirical potential energy function toward ab initio folding G protein-coupled receptors. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(5), 1752–1762 (2020)

    Article  Google Scholar 

  21. Wang, H., et al.: Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment. Brief. Bioinform. 22(5), bbaa409 (2021)

    Google Scholar 

  22. Yang, H., et al.: Drug–disease associations prediction via multiple kernel-based dual graph regularized least squares. Appl. Soft Comput. 112, 107811 (2021)

    Article  Google Scholar 

  23. Sun, M., et al.: MLapSVM-LBS: Predicting DNA-binding proteins via a multiple Laplacian regularized support vector machine with local behavior similarity. Knowl.-Based Syst. 250, 109174 (2022)

    Article  Google Scholar 

  24. Du, J., et al.: Topology adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370 (2017)

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  26. Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics: Short Papers, vol. 2 (2016)

    Google Scholar 

  27. Yazdani-Jahromi, M., et al.: AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification. Brief. Bioinform. 23(4), bbac272 (2022)

    Google Scholar 

  28. Liu, H., et al.: Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics 31(12), i221–i229 (2015)

    Article  Google Scholar 

  29. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  30. Wang, E., et al.: A graph convolutional network–based method for chemical-protein interaction extraction: algorithm development. JMIR Med. Inform. 8(5), e17643 (2020)

    Article  Google Scholar 

  31. Wu, Y., et al.: BridgeDPI: a novel graph neural network for predicting drug–protein interactions. Bioinformatics 38(9), 2571–2578 (2022)

    Article  Google Scholar 

  32. Durrant, J.D., McCammon, J.A.: NNScore 2.0: a neural-network receptor–ligand scoring function. J. Chem. Inf. Model. 51(11), 2897–2903 (2011)

    Google Scholar 

  33. Ballester, P.J., Mitchell, J.B.O.: A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics 26(9), 1169–1175 (2010)

    Google Scholar 

  34. Ragoza, M., et al.: Protein–ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 57(4), 942–957 (2017)

    Article  Google Scholar 

  35. Torng, W., Altman, R.B.: Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 59(10), 4131–4149 (2019)

    Google Scholar 

  36. Tsubaki, M., Tomii, K., Sese, J.: Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by the National Natural Science Foundation of China (62073231, 62176175, 61902271), National Research Project (2020YFC2006602), Provincial Key Laboratory for Computer Information Processing Technology, Soochow University (KJS2166), Opening Topic Fund of Big Data Intelligent Engineering Laboratory of Jiangsu Province (SDGC2157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, B., Zhang, R., Jiang, T., Cui, Z., Wu, H. (2023). Drug-Target Interaction Prediction Based on Interpretable Graph Transformer Model. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics