Skip to main content

A Novel Descriptor and Molecular Graph-Based Bimodal Contrastive Learning Framework for Drug Molecular Property Prediction

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14088))

Included in the following conference series:

  • 854 Accesses

Abstract

In AI drug discovery, molecular property prediction is critical. Two main molecular representation methods in molecular property prediction models, descriptor-based and molecular graph-based, offer complementary information, but face challenges like representation conflicts and training imbalances when combined. To counter these issues, we propose a two-stage training process. The first stage employs a self-supervised contrastive learning scheme based on descriptors and graph representations, which pre-trains the encoders for the two modal representations, reducing bimodal feature conflicts and promoting representational consistency. In the second stage, supervised learning using target attribute labels is applied. Here, we design a multi-branch predictor architecture to address training imbalances and facilitate decision fusion. Our method, compatible with various graph neural network modules, has shown superior performance on most of the six tested datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajpurkar, P., Chen, E., Banerjee, O., et al.: AI in health and medicine. Nat. Med. 28(1), 31–38 (2022)

    Article  Google Scholar 

  2. Rabaan, A.A., Alhumaid, S., Mutair, A.A., et al.: Application of artificial intelligence in combating high antimicrobial resistance rates. Antibiotics 11(6), 784 (2022)

    Article  Google Scholar 

  3. Fang, X., Liu, L., Lei, J., et al.: Geometry-enhanced molecular representation learning for property prediction. Nature Mach. Intell. 4(2), 127–134 (2022)

    Article  Google Scholar 

  4. Asada, M., Miwa, M., Sasaki, Y.: Using drug descriptions and molecular structures for drug–drug interaction extraction from literature. Bioinformatics 37(12), 1739–1746 (2021)

    Article  Google Scholar 

  5. Kurotani, A., Kakiuchi, T., Kikuchi, J.: Solubility Prediction from Molecular Properties and Analytical Data Using an In-phase Deep Neural Network (Ip-DNN), ACS omega (2021)

    Google Scholar 

  6. Alves, A.H.R., Cerri, R.: A two-step model for drug-target interaction prediction with predictive bi-clustering trees and XGBoost. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2022)

    Google Scholar 

  7. Wei, Y., Li, S., Li, Z., et al.: Interpretable-ADMET: a web service for ADMET prediction and optimization based on deep neural representation. Bioinformatics 38(10), 2863–2871 (2022)

    Article  Google Scholar 

  8. Wieder, O., et al.: A compact review of molecular property prediction with graph neural networks, Drug Discovery Today: Technologies (2020)

    Google Scholar 

  9. Rong, Y., Bian, Y., Xu, T., et al.: Self-supervised graph transformer on large-scale molecular data. Adv. Neural. Inf. Process. Syst. 33, 12559–12571 (2020)

    Google Scholar 

  10. Lovrić, M., Molero, J.M., Kern, R.: PySpark and RDKit: moving towards big data in cheminformatics. Mol. Inf. 38(6), 1800082 (2019)

    Article  Google Scholar 

  11. Yap, C.W.: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32(7), 1466–1474 (2011)

    Article  MathSciNet  Google Scholar 

  12. Abu-Dief, A.M., El-Metwaly, N.M., Alzahrani, S.O., et al.: Structural, conformational and therapeutic studies on new thiazole complexes: drug-likeness and MOE-simulation assessments. Res. Chem. Intermediates 47, 1979–2002 (2021)

    Google Scholar 

  13. Li, Z., Liu, F., Yang, W., et al.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Networks Learn. Syst. (2021)

    Google Scholar 

  14. Busbridge, D., Sherburn, D., Cavallo, P., Hammerla, N.Y.: Relational graph attention networks, arXiv preprint arXiv:1904.05811 (2019)

  15. Xiong, Z., et al.: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J. Med. Chem. 63(16), 8749–8760 (2019)

    Article  Google Scholar 

  16. Chithrananda, S., Grand, G., Ramsundar, B.: Chemberta: large-scale self-supervised pretraining for molecular property prediction, arXiv preprint arXiv:2010.09885 (2020)

  17. Hu, W., Liu, B., Gomes, J., et al.: Strategies for pre-training graph neural networks. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  18. Li, P., et al.: Learn molecular representations from large-scale unlabeled molecules for drug discovery, arXiv preprint arXiv:2012.11175 (2020)

  19. Jiang, D., et al.: Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. J. Cheminform. 13(1), 1–23 (2021)

    MathSciNet  Google Scholar 

  20. Bai, P., Miljković, F., John, B., et al.: Interpretable bilinear attention network with domain adaptation improves drug–target prediction. Nature Mach. Intell., 1–11 (2023)

    Google Scholar 

  21. Liu, S., Demirel, M.F., Liang, Y.: N-gram graph: Simple unsupervised representation for graphs, with applications to molecules. Advances in neural information processing systems, 32 (2019)

    Google Scholar 

  22. Honda, S., Shi, S., Ueda, H.R.: Smiles transformer: Pre-trained molecular fingerprint for low data drug discovery, arXiv preprint arXiv:1911.04738 (2019)

  23. He, K., Fan, H., Wu, Y., et al.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  24. Wang, Y., Wang, J., Cao, Z., et al.: Molecular contrastive learning of representations via graph neural networks. Nature Mach. Intell. 4(3), 279–287 (2022)

    Article  Google Scholar 

  25. Yang, K., et al.: Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59(8), 3370–3388 (2019)

    Article  Google Scholar 

  26. Rahaman, O., Gagliardi, A.: Deep learning total energies and orbital energies of large organic molecules using hybridization of molecular fingerprints. J. Chem. Inf. Model. 60(12), 5971–5983 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Supported by grants from the National Natural Science Foundation of China (No. 81973182); National Science Foundation of China (No. 61806092); Jiangsu Natural Science Foundation (No. BK20180326); “Double First-Class” University project from China Pharmaceutical University (Program No. CPU2018GF02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z. et al. (2023). A Novel Descriptor and Molecular Graph-Based Bimodal Contrastive Learning Framework for Drug Molecular Property Prediction. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_60

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics