Skip to main content

An Improved Method for CFNet Identifying Glioma Cells

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14088))

Included in the following conference series:

  • 772 Accesses

Abstract

Glioma cells are a type of tumor cells that originate in the supportive tissue of the brain and spinal cord called glial cells. These cells can proliferate rapidly, leading to the formation of a mass or tumor in the brain or spinal cord. Glioma cells can be classified into different types based on their morphology under a microscope and the genetic alterations they undergo. Some types of glioma cells are more aggressive and have a worse prognosis than others. Treatment for glioma cells typically involves a combination of surgery, radiation therapy, and chemotherapy. In recent years, deep learning techniques have found extensive applications in the field of medical imaging, particularly in neuroimaging. Deep learning has been used to aid physicians in automatically detecting and classifying images of glioma cells to improve diagnostic accuracy and treatment effectiveness. This approach typically requires a significant amount of data to train neural networks to identify specific features and types of glioma cells. On this basis, we proposed Cascade Fusion Network (CFNet) to try to improve the accuracy of identification of glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ampie, L., Woolf, E.C., Dardis, C.: Immunotherapeutic advancements for glioblastoma. Front. Oncol. 5, 12 (2015)

    Article  Google Scholar 

  2. Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., et al.: circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014)

    Article  Google Scholar 

  3. Bengio, Y., Goodfellow, I., Courville, A.: Deep learning. MIT press Cambridge, MA, USA (2017)

    MATH  Google Scholar 

  4. Brandes, A.A., Tosoni, A., Franceschi, E., et al.: Glioblastoma in adults. Crit. Rev. Oncol. Hematol. 67, 139–152 (2008)

    Article  Google Scholar 

  5. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1872–1886 (2013)

    Article  Google Scholar 

  6. Cai, W., Wei, Z.: Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geoscience and Remote Sensing Letters (2020)

    Google Scholar 

  7. Chen, L., Chen, J., Hajimirsadeghi, H., et al.: Adapting Grad-CAM for embedding networks. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2794–2803 (2020)

    Google Scholar 

  8. Chen, L.-C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587 (2017)

  9. Chen, L.-L., Yang, L.: Regulation of circRNA biogenesis. RNA Biol. 12, 381–388 (2015)

    Article  Google Scholar 

  10. Chen, Y., Dai, X., Liu, M., et al.: Dynamic convolution: Attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030–11039 (2020)

    Google Scholar 

  11. Choi, J., Choi, J., Rhee, W.: Interpreting neural ranking models using grad-cam, arXiv preprint arXiv:2005.05768 (2020)

  12. Du, J., Gui, L., He, Y., et al.: Convolution-based neural attention with applications to sentiment classification. IEEE Access 7, 27983–27992 (2019)

    Article  Google Scholar 

  13. Du, W.W., Zhang, C., Yang, W., et al.: Identifying and characterizing circRNA-protein interaction. Theranostics 7, 4183 (2017)

    Article  Google Scholar 

  14. Evans, R., Jumper, J., Kirkpatrick, J., et al.: De novo structure prediction with deeplearning based scoring. Annu Rev Biochem 77, 6 (2018)

    Google Scholar 

  15. Goldstein, A., Veres, P., Burns, E., et al.: An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. The Astrophysical Journal Letters 848, L14 (2017)

    Article  Google Scholar 

  16. Hanan, M., Simchovitz, A., Yayon, N., et al.: A Parkinson’s disease Circ RNA s resource reveals a link between circ SLC 8A1 and oxidative stress. EMBO Mol. Med. 12, e11942 (2020)

    Article  Google Scholar 

  17. Hellmark, T., Segelmark, M.: Diagnosis and classification of Goodpasture’s disease (anti-GBM). J. Autoimmun. 48, 108–112 (2014)

    Article  Google Scholar 

  18. Hirschman, I.I., Widder, D.V.: The convolution transform. Courier Corporation (2012)

    Google Scholar 

  19. Huang, C.-Z.A., Cooijmans, T., Roberts, A., et al.: Counterpoint by convolution, arXiv preprint arXiv:1903.07227 (2019)

  20. Jiang, H., Xu, J., Shi, R., et al.: A multi-label deep learning model with interpretable Grad-CAM for diabetic retinopathy classification. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1560–1563. IEEE (2020)

    Google Scholar 

  21. Joo, H.-T., Kim, K.-J.: Visualization of deep reinforcement learning using grad-CAM: how AI plays atari games? In: 2019 IEEE Conference on Games (CoG), pp. 1–2. IEEE (2019)

    Google Scholar 

  22. Learning, D.: Deep learning, High-Dimensional Fuzzy Clustering (2020)

    Google Scholar 

  23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  24. Li, L., Bu, D., Zhao, Y.: Circ RNA wrap–a flexible pipeline for circ RNA identification, transcript prediction, and abundance estimation. FEBS Lett. 593, 1179–1189 (2019)

    Google Scholar 

  25. Li, Z., Liu, F., Yang, W., et al.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems (2021)

    Google Scholar 

  26. Liu, J., Zha, Z.-J., Hong, R., et al.: Deep adversarial graph attention convolution network for text-based person search. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 665–673 (2019)

    Google Scholar 

  27. Lomonaco, V., Pellegrini, L., Rodriguez, P., et al.: CVPR 2020 continual learning in computer vision competition: Approaches, results, current challenges and future directions. Artif. Intell. 303, 103635 (2022)

    Article  MATH  Google Scholar 

  28. Yun, S., Jeong, M., Kim, R., et al.: Graph transformer networks. Advances in neural information processing systems, 32 (2019)

    Google Scholar 

  29. Lukiw, W.J., Circular, R.N.A.: circRNA) in Alzheimer’s disease (AD. Front. Genet. 4, 307 (2013)

    Article  Google Scholar 

  30. Meng, S., Zhou, H., Feng, Z., et al.: CircRNA: functions and properties of a novel potential biomarker for cancer. Mol. Cancer 16, 1–8 (2017)

    Article  Google Scholar 

  31. Mohibi, S., Chen, X., Zhang, J.: Cancer the ‘RBP’eutics–RNA-binding proteins as therapeutic targets for cancer. Pharmacol. Ther. 203, 107390 (2019)

    Article  Google Scholar 

  32. Nandhini Abirami, R., Durai Raj Vincent, P., Srinivasan, K., et al.: Deep CNN and deep GAN in computational visual perception-driven image analysis. Complexity 2021 (2021)

    Google Scholar 

  33. Ohgaki, H., Kleihues, P.: Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol. 170, 1445–1453 (2007)

    Article  Google Scholar 

  34. Yuan, L., Sun, T., Zhao, J., et al.: A novel computational framework to predict disease-related copy number variations by integrating multiple data sources. Frontiers in Genetics (12) (2021)

    Google Scholar 

  35. Yuan, L., Guo, L.-H., Yuan, C.-A., et al.: Integration of multi-omics data for gene regulatory network inference and application to breast cancer. IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 782–791 (2018)

    Article  Google Scholar 

  36. Yuan, L., Yuan, C.-A., Huang, D.-S.: FAACOSE: A fast adaptive ant colony optimization algorithm for detecting SNP epistasis. Complexity 2017 (2017)

    Google Scholar 

  37. Yuan, L., Zheng, C.-H., Xia, J.-F., et al.: Module based differential coexpression analysis method for type 2 diabetes. BioMed Research International 2015 (2015)

    Google Scholar 

  38. Yuan, L., Yang, Z., Zhao, J., et al.: Pan-Cancer Bioinformatics Analysis of Gene UBE2C. Frontiers in Genetics 13 (2022)

    Google Scholar 

  39. Yuan, L., Zhao, J., Sun, T., et al.: A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs. BMC Bioinformatics 22, 1–18 (2021)

    Article  Google Scholar 

  40. Shen, Z., Shao, Y.L., Liu, W., et al.: Prediction of Back-splicing sites for CircRNA formation based on convolutional neural networks. BMC Genomics 23, 581 (2022)

    Article  Google Scholar 

  41. Yuan, L., Han, K., Huang, D.S.: Novel algorithm for multiple quantitative trait loci mapping by using bayesian variable selection regression. In: International Conference on Intelligent Computing (2016)

    Google Scholar 

  42. Yuan, L., Lai, J., Zhao, J., et al.: Path-ATT-CNN: A Novel Deep Neural Network Method for Key Pathway Identification of Lung Cancer. Frontiers in Genetics 13 (2022)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 62002189, 62102200), the Natural Science Foundation of Shandong Province, China (No. ZR2020QF038), the 20 Planned Projects in Jinan (No.2021GXRC046), and the Excellent Teaching Team Training Plan Project of QILU UNIVERSITY OF TECHNOLOGY.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingang Wang or Yushui Geng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, L. et al. (2023). An Improved Method for CFNet Identifying Glioma Cells. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14088. Springer, Singapore. https://doi.org/10.1007/978-981-99-4749-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4749-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4748-5

  • Online ISBN: 978-981-99-4749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics